首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.  相似文献   

2.
Five new binuclear lanthanide compounds [Ln(2,4-DClBA)3phen]2(Ln = Pr(1), Eu(2), Tb(3), Ho(4) and Er(5); 2,4-DClBA = 2,4-dichlorobenzoate; phen = 1,10-phenanthroline) have been synthesized and structurally characterized by X-ray crystallography. And all of them were carefully investigated by elemental analysis, molar conductance, IR, UV and TG/DSC-FTIR technology. Single-crystal X-ray diffraction studies revealed that compounds 1–5 were binuclear molecules with an inversion center and the Ln3+ ions contained two kinds of coordination environment that was a distorted monocapped square-antiprism in the compounds 1–2, and a distorted square-antiprism geometry in the compounds 3–5. The 3D surface graphs for the FTIR spectra of gaseous products for the compounds 1–5 were recorded using simultaneous TG/DSC-FTIR technique which is intended to further analysis of the thermal decomposition processes. Hence the gaseous products were identified by the solved single IR spectra obtained at different temperatures from the 3D surface graphs. Furthermore, the Eu(Ш) and Tb(Ш) ternary compounds exhibited intense luminescence under the radiation of UV light. And the results for antimicrobial test show that these compounds exhibit good bacteriostatic activity against Staphylococcus aureus, and better antimicrobial activity against Escherichia coli and Candida albicans.  相似文献   

3.
The complexes of [Ln(2,3,4-tmoba)3phen]2 (Ln = Dy (1), Eu (2), Tb (3); 2,3,4-tmoba = 2,3,4-trimethoxybenzoate; phen = 1,10-phenanthroline) were synthesized and characterized by a series of techniques including the elemental analysis, IR and fluorescent spectra and TG/DSC-FTIR technology. The crystal structures were determined by X-ray crystallography. Each complex include two Ln3+ ions, six 2,3,4-tmoBA and two phen molecules forming a binuclear structure, giving the coordination number of nine. The three-dimensional IR accumulation spectra of gaseous products for the complexes 1 to 3 are analyzed and the thermal decomposition processes are further authenticated. Through means of differential scanning calorimeter (DSC), two solid-solid phase transition endothermic peaks were found in the complex 2, which was different from the complexes 1 and 3. The heat capacities of these complexes were measured and fitted to a polynomial equation with the least squares method for each complex on the basis of the reduce temperature x (x = [T  (Tmax + Tmin)/2]/[(Tmax  Tmin)/2]) over the range from (256.15 to 476.15) K. Subsequently, the smoothed molar heat capacities and thermodynamic functions (HTH298.15 K), (STS298.15 K), and (GTG298.15 K) of the complexes 1 to 3 were calculated based on the fitted polynomial of the heat capacities. The fluorescent intensity of the complexes 2 and 3 are markedly improved as well.  相似文献   

4.
The energy of combustion of crystalline 3,4,5-trimethoxybenzoic acid in oxygen at T=298.15 K was determined to be -4795.9±1.3 kJ mol-1 using combustion calorimetry. The derived standard molar enthalpies of formation of 3,4,5-trimethoxybenzoic acid in crystalline and gaseous states at T=298.15 K, ΔfHm Θ (cr) and ΔfHm Θ (g), were -852.9±1.9 and -721.7±2.0 kJ mol-1, respectively. The reliability of the results obtained was commented upon and compared with literature values. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
A new series of lanthanide complexes [Ln(3,4-DMBA)3phen]2 [Ln(III) = Nd(1), Sm(2), Tb(3) and Dy(4), 3,4-DMBA = 3,4-dimethylbenzoate, phen = 1,10-phenanthroline] have been synthesized and characterized by elemental analysis, infrared spectra and TG-DTG techniques. The single crystals of the complexes 3 and 4 have been obtained and their structures have been determined by single-crystal X-ray diffraction. In the complexes 3 and 4, each Ln(III) ion is coordinated by four bidentate-bridging 3,4-DMBA ligands, one bidentate-chelating 3,4-DMBA group and one bidentate-chelating phen ligand, giving a coordination number of eight. The complex 3 shows bright green luminescence under ultraviolet light in the solid state. Thermal analysis of the complexes 14 are discussed by TG-DTG and IR techniques. The non-isothermal kinetics of the complexes 14 are investigated by using double equal-double step method. The thermodynamic parameters (ΔH , ΔG and ΔS ) and kinetic parameters (activation energy E and the pre-exponential factor A) of the four complexes are also calculated.  相似文献   

6.
Isothermal decomposition kinetic of three lanthanide mixed complexes with the general formula of Ln(thd)3phen (where Ln=Nd3+, Sm3+ or Er3+, thd=2,2,6,6-tetramethyl-3,5-heptanodione and phen=1,10-phenanthroline) has been studied in this work. The powders were characterized by their melting point, elemental analysis, FTIR spectroscopy and thermogravimetry. The isothermal TG curves have been recorded under the same conditions at 265–285, 265–285 and 250–270°C for Nd(thd)3phen, Sm(thd)3phen and Er(thd)3phen, respectively. The kinetic parameters, i.e. activation energy, reaction order and frequency factor were obtained through the technique of lineal regression using the relation g(α)=kt+g 0. The analysis was done at decomposed fractions between 0.10–0.90. The values of activation energy were: 114.10, 114.24 and 115.04 kJ mol–1 for the Nd(thd)3phen, Sm(thd)3phen and Er(thd)3phen complexes, respectively. The kinetic models that best described the isothermal decomposition reaction the complexes were R1 and R2. The values of activation energy suggests the following decreasing order of stability: Nd(thd)3phen<Sm(thd)3phen<Er(thd)3phen.  相似文献   

7.
制备了以3-((4,6-二甲基-2-嘧啶基)硫代)-丙酸(HL)和菲咯啉(Phen)为配体的2个三元稀土配合物[Eu(L)3(Phen)]2·2H2O(1)和[Tb(L)3(Phen)]2·2H2O(2),并对其结构进行了表征。单晶X射线衍射分析表明它们是同构的。2个稀土离子(Ln)由4个羧酸配体桥接,形成二聚体排列。其余2个羧酸配体和Phen以双齿螯合方式与Ln配位。Ln的配位数为9,具有扭曲的单端方形反棱柱配位多面体构型。固态光致发光测试表明,这2种配合物都显示了金属中心的特征发射带。  相似文献   

8.
制备了以3-((4,6-二甲基-2-嘧啶基)硫代)-丙酸(HL)和菲咯啉(Phen)为配体的2个三元稀土配合物[Eu(L)3(Phen)]2·2H2O(1)和[Tb(L)3(Phen)]2·2H2O(2),并对其结构进行了表征。单晶X射线衍射分析表明它们是同构的。2个稀土离子(Ln)由4个羧酸配体桥接,形成二聚体排列。其余2个羧酸配体和Phen以双齿螯合方式与Ln配位。Ln的配位数为9,具有扭曲的单端方形反棱柱配位多面体构型。固态光致发光测试表明,这2种配合物都显示了金属中心的特征发射带。  相似文献   

9.
Kinetics of the coordination reaction of lanthanide (LaIII, EuIII) α-hydroxycarboxylates [LnL3(H2O)2] with 1,10-phenanthroline (phen) in methanol-water (v/v, 3:2) were studied at 25°C by calorimetric titration. A one-step reaction process in accordance with the rate law has been suggested. The reaction is found to be first order for both lanthanide α-hydroxycarboxylates and phen. We have evaluated rate constants of the reactions. It is found that a linear free energy relationship exists between the stability constants of the lanthanide-α-hydroxycarboxylate-phen ternary complex and the rate constants. It is also found that a linear free energy relationship exists between the rate constants of La-hydroxycarboxylate with phen and the acid strength of α-hydroxy-acid as primary ligand, but the linear free energy relationship does not exist in the Eu-α-hydroxycarboxylate-phen ternary complex. The influence of other factors upon the reaction rate constants was also discussed.  相似文献   

10.
Complexes of yttrium(III) and lanthanides(III) with 4-hydroxy-3,5-dimethoxybenzoic (syringic) acid were obtained as solids with metal to ligand mole ratio of 1: 3. The compounds were characterized by elemental analysis, IR spectroscopy, X-ray diffraction patterns, solubility, and thermal studies. The complexes are sparingly soluble in water and stable at room temperature. Compounds of light lanthanides (from La to Nd) are hydrated and they crystallize in a triclinic system. When heated, they lose water molecules in one step and in the next step they decompose to oxides. Complexes of yttrium and other lanthanides are anhydrous and crystallize in a monoclinic system. They are stable up to 300°C and then decompose to oxides. As the coordination number of lanthanide ions is usually equal to 9 or 8, one can suppose that hydroxy or methoxy groups take part in the coordination of these metal ions.  相似文献   

11.
Two lanthanide complexes with 2-fluorobenzoate (2-FBA) and 1,10-phenanthroline (phen) were synthesized and characterized by X-ray diffraction. The structure of each complex contains two non-equivalent binuclear molecules, [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2 and [Ln(2-FBA)3?·?phen]2 (Ln?=?Eu (1) and Sm (2)). In [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2, the Ln3+ is surrounded by eight atoms, five O atoms from five 2-FBA groups, one O atom from ethanol and two N atoms from phen ligand; 2-FBA groups coordinate Ln3+ with monodentate and bridging coordination modes. The polyhedron around Ln3+ is a distorted square-antiprism. In [Ln(2-FBA)3?·?phen]2, the Ln3+ is coordinated by nine atoms, seven O atoms from five 2-FBA groups and two N atoms of phen ligand; 2-FBA groups coordinate Ln3+ ion with chelating, bridging and chelating-bridging three coordination modes. The polyhedron around Ln3+ ion is a distorted, monocapped square-antiprism. The europium complex exhibits strong red fluorescence from 5D0?→?7F j ( j?=?1–4) transition emission of Eu3+.  相似文献   

12.
Three new lanthanide complexes incorporating salicylate (HSA or SA) and 1,10-phenanthroline (phen), Ln3(HSA)5(SA)2(phen)3 [Ln = Ho (1) and Er (2)], and Sm2(HSA)2(SA)2(phen)3 (3), have been synthesized. X-ray structural analysis reveals that 1 and 2 are isostructural with a trinuclear pattern, and 3 exhibits a binuclear structure. Comparison of the structural differences between 1/2 and 3 suggests that the identity of metal plays an important role in construction of such complexes. The magnetic properties of 1 are discussed. Moreover, 2 and 3 are both photoluminescent materials, and their emission properties are closely related to their corresponding LnIII centers.  相似文献   

13.
Three lanthanide complexes with a general formula [Ln(2,3-DClBA)3phen]2 (Ln(III) = Eu(1), Tb(2), Ho(3); 2,3-DClBA = 2,3-dichlorobenzoate; phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, molar conductance, infrared and ultraviolet spectra and powder X-ray diffraction (XRD). The luminescent properties of the complexes 1 and 2 were studied. The thermal behaviors of the complexes were also discussed by thermogravimetric (TG), differential thermogravimetric (DTG) and infrared spectra (IR) techniques. The heat capacities of the complexes were measured from 259.15 to 493.02 K by means of Differential scanning calorimeter (DSC). The dependence of heat capacity on the reduce temperature x (x = [T ? (Tmax + Tmin)/2]/[(Tmax ? Tmin)/2]) was fitted to a polynomial equation with the least squares method for each complex. Furthermore, based on the fitted polynomial, the smoothed heat capacities and the derived thermodynamic functions (HT ? H298.15 K), (ST ? S298.15 K) and (GT ? G298.15 K) in the measured temperature range were obtained with an interval of 10 K.  相似文献   

14.
A series of lanthanide complexes with the 2-chloro-4,5-difluorobenzoate (2-cl-4,5-dfba) and 1,10-phenanthroline (phen), have been synthesized with the formulae of [La(2-cl-4,5-dfba)3phen]n·nH2O (1), [Nd(2-cl-4,5-dfba)3phenH2O]2 (2), [Ln(2-cl-4,5-dfba)3phen]2 (Ln = Eu (3), Ho (4)). The complexes are characterized by elemental analysis, infrared and fluorescent spectra and X-ray single-crystal diffraction. The structures of the four complexes are very different. Complex 1 is an infinite 1D chain polymeric structure formed by the asymmetric units with the mirror growth pattern. Each La3+ ion is coordinated to four bridging carboxylic groups, two tridentate chelating–bridging carboxylic groups, simultaneous with one phen molecule, giving the coordination number of nine. In the molecular structures of complexes 2 and 3, two Ln3+ ions are linked by four carboxyl groups, forming two binuclear molecules. In addition, each Nd3+ ion in complex 2 is bonded to one H2O molecule and one carboxyl group by monodentate mode, one phen molecule by bidentate chelating, and each Eu3+ ion is also chelated to one phen molecule and one carboxyl group in complex 3. And in complex 4, the Ho3+ ion yields a eight-coordinated distorted square anti-prism coordination geometry. The three-dimensional IR accumulation spectra of gaseous products for complexes 1 to 4 are analyzed and further authenticated the thermal decomposition processes with TG-DTG curves. The heat capacities of complexes 2 to 4 are measured and fitted to a polynomial equation by the least squares method on the basis of the reduced temperature x (x = [T−(Tmax + Tmin)/2]/[(Tmax  Tmin)/2]). Then the smoothed molar heat capacities and thermodynamic functions of complexes 2 to 4 are calculated. The fluorescence intensity of complex 3 is markedly improved as well.  相似文献   

15.
The complex of [Tb2(p-MOBA)6(PHEN)2] (p-MOBA=C8H7O3,p-methoxybenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of Tb2(p-MOBA)6(PHEN)2 in a static air atmosphere was investigated by TG-DTG, DTA, SEM and IR techniques. By the kinetic method of processing thermal analysis data put forward by Malek et al., it is defined that the kinetic model for the first-step thermal decomposition is SB(m,n). The activation energy E for this step reaction is 140.92 kJ mol-1, the enthalpy of activation H is 136.06 kJ mol-1, the Gibbs free energy of activation G is 145.16 kJ mol-1, the entropy of activation S is -15.53 J mol-1, and the pre-exponential factor lnA is 29.26. The lifetime equation at mass loss of 10% was deduced as ln =-28.72+1.943·104/T by isothermal thermogravimetric analysis.  相似文献   

16.
The new 1,2,4-benzenetricarboxylates of lanthanide(III) of the formula Ln(btc)·nH2O, where btc is 1,2,4-benzenetricarboxylate; Ln is La-Lu, and n=2 for Ce; n=3 for La, Yb, Lu; and n=4 for Pr-Tm were prepared and characterized by elemental analysis, infrared spectra and X-ray diffraction patterns. Polycrystalline complexes are isotructural in the two groups: La-Tm and Yb, Lu. IR spectra of the complexes show that all carboxylate groups from 1,2,4-benzentricarboxylate ligands are engaged in coordination of lanthanide atoms. The thermal analysis of the investigated complexes in air atmosphere was carried out by means of simultaneous TG-DTA technique. The complexes are stable up to about 30°C but further heating leads to stepwise dehydration. Next, anhydrous complexes decompose to corresponding oxides. The combined TG-FTIR technique was employed to study of decomposition pathway of the investigated complexes.  相似文献   

17.
Reactions of Ln(ClO4)3?·?6H2O (Ln=La(III), Eu(III), Nd(III)), 1,10-phenanthroline (phen) and phenoxyacetic acid (PA) or 2,4-dichlorophenoxyacetic acid (2,4-D) yield [La(PA)2 (phen)2]2(ClO4)2 (1), [Eu(2,4-D)2(phen)2]2(ClO4)2 (2) and [Nd(2,4-D)3(C2H5OH)] n (3). Compounds 13 are characterized by elemental analyses, IR, UV–Vis, ESI-MS spectra and TGA. 1 is also characterized by 1H and 13C NMR. Single crystal X-ray diffraction analyses reveal that 1 and 2 are binuclear, and 3 has a one-dimensional polymeric structure. The La(III), Eu(III) and Nd(III) are nine-coordinate with a distorted tricapped trigonal-prism geometry.  相似文献   

18.
合成并表征了2个双核配合物[Pr (2-Cl-4-FBA)3(5,5''-DM-2,2''-bipy)]21)和[Dy (2-Cl-4-FBA)3(5,5''-DM-2,2''-bipy)]2·2(2-Cl-4-FHBA)(2),其中2-Cl-4-FHBA=2-氯-4-氟苯甲酸,5,5''-DM-2,2''-bipy=5,5''-二甲基-2,2''-联吡啶。配合物1以八配位的Pr3+为中心,其周围的配位环境为扭曲的三角十二面体。配合物2的结构是独特的,它包含2个自由的2-氯-4-氟苯甲酸分子,并以九配位的Dy3+为中心与周围的氮、氧原子形成扭曲的三棱镜几何构型。这2个配合物均结晶于三斜晶系P1空间群,并通过氢键相互作用和π-π堆积作用形成了一维和二维超分子结构。研究了配合物的热分解过程,结果表明配合物12分别分为4步和5步进行分解。同时对配合物的三维红外堆积图进行了研究,结果表明,整个热分解过程中释放出的主要气态产物是水、二氧化碳和有机小分子碎片。配合物2的荧光性质研究表明,它可以发射出Dy3+的特征跃迁对应的荧光。  相似文献   

19.
Fourteen new complexes with the general formula of Ln(Hmna)3(phen) (H2mna = 2-mercaptonicotinic acid and phen = 1,10-phenanthroline) were synthesized and characterized by elemental analyses, IR spectra and thermogravimetric analyses. In addition, molar specific heat capacities were determined by a microcalorimeter at 298.15 K. The IR spectra of the complexes showed that the Ln3+ coordinated with the oxygen atoms of H2mna and the nitrogen atoms of phen. The complexes decomposed directly to oxides Ln2O3, CeO2, Pr6O11, and Tb4O7 in one step. The values of molar specific heat capacities for fourteen solid complexes were plotted against the atomic numbers of lanthanide, which presented as “tripartite effect”. It suggested a certain amount of covalent character existed in the bond of Ln3+ and ligands, according with nephelauxetic effect of 4f electrons of rare earth ions. The article is published in the original.  相似文献   

20.
对氨基苯甲酸与稀土离子在水热条件下反应得到组成为[Ln(p-Ab)3(H2O)]n(p-Ab=对氨基苯甲酸根阴离子,Ln=Sm(1)、Gd(2)、Er(3))的配位聚合物,而Gd(Ⅲ)离子与对氨基苯甲酸在常规溶液条件下反应得到组成为{[Gd(p-Ab)3(H2O)2].H2O}2(4)的双核配合物。配合物(1)-(3)晶体属单斜晶系,P2(1)/n空间群;中心离子配位数为8。配合物为二维层状结构。配合物(4)为双核结构,配体氨基未参与配位。其晶体属三斜晶系,Pī空间群。配位多面体为8配位的双帽三角棱柱体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号