首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel star‐shaped hard–soft triblock copolymers, 4‐arm poly(styrene)‐block‐poly [poly(ethylene glycol) methyl ethyl methacrylate]‐block‐poly{x‐[(4‐cyano‐4′‐biphenyl) oxy] alkyl methacrylate} (4PS‐PPEGMA‐PMAxLC) (x = 3, 10), with different mesogen spacer length are prepared by atom‐transfer radical polymerization. The star copolymers comprised three different parts: a hard polystyrene (PS) core to ensure the good mechanical property of the solid‐state polymer, and a soft, mobile poly[poly(ethylene glycol) methyl ethyl methacrylate] (PPEGMA) middle sphere responsible for the high ionic conductivity of the solid polyelectrolytes, and a poly{x‐[(4‐cyano‐4′‐biphenyl)oxy]alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star‐shaped hard–soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nanoscale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer 4PS‐PPEGMA‐PMA10LC shows ionic conductivity value of 1.3 × 10?4 S cm?1 (25 °C) after annealed from liquid crystal state, which is higher than that of 4PS‐PPEGMA electrolyte without mesogen groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341–4350  相似文献   

2.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

3.
Novel polystyrene derivatives comprising [1‐(3‐isopropenyl‐phenyl)‐1‐methyl‐ethyl]‐carbamate in the side chain were synthesized as photoreactive copolymers. Poly(4‐vinylphenol) was made to react with 1‐(1‐isocyanato‐1‐methyl‐ethyl)‐3‐isopropenyl‐benzene (m‐TMI) and the unreacted hydroxyl groups were protected with acetyl chloride. The copolymers are highly sensitive to the radical photoinitiators that can be activated by irradiation of UV light (λ = 300–365 nm). FTIR spectroscopy was employed to monitor the structural changes in the copolymers exposed to UV irradiation. The dielectric properties of the copolymers were investigated by measuring the capacitance and calculating the permittivity as a function of frequency, along with the IV characteristics. Their properties were compared with those of thermally crosslinkable poly(4‐vinylphenol) blended with poly(melamine‐co‐formaldehyde), which is frequently used as a dielectric layer in organic field‐effect transistors (OFETs). No significant dielectric dispersion was observed in the frequency range of 1 kHz–1 MHz. The dielectric constant was determined to be in the range of 4.2–6.0, which offers a potential for the application of these copolymers to OFET gate insulators. These soluble dielectrics exhibit good film uniformity and can also be patterned using a standard photolithographic technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1710–1718, 2008  相似文献   

4.
The dielectric properties of low-molecular-weight propylene glycols HO? [CH(CH3)CH2O]n? H (n = 3, 4, 5) were investigated to clarify the effect of chain length on the dielectric properties. The measurement of dielectric constant and dielectric loss was carried out over the frequency range 30 Hz to 30 MHz at temperatures of ?20 to ?65°C. The static dielectric constants of these glycols are between 10 and 30, slightly smaller than values for the corresponding ethylene glycols of the same degree of polymerization. All of the Cole–Cole arcs, even that for pentapropylene glycol, can be represented by the empirical Davidson–Cole equation. The dielectric properties of homologous propylene glycols are compared with those for the ethylene glycols and are discussed in terms of the effects of chain length and intermolecular hydrogen bonds.  相似文献   

5.
Polymer electrolytes, (PEO:LiClO4)+x IL (1‐Buty‐3‐methylimidazolium hexafluorophosphate) with varying concentration of IL; x = 0,5,10,15,20 wt % have been prepared by solution cast technique and characterized by X‐Ray diffraction, differential scanning calorimetery, FTIR, conductivity and dielectric relaxation measurements in the frequency range of 100 Hz–5 MHz. Temperature dependence of relaxation frequency and conductivity were found to be typical of thermally activated process both at T > Tm and T < Tm. Composition dependence of conductivity, dielectric relaxation, and degree of crystallinity has also been studied. On addition of IL, the degree of crystallinity after a decrease at 5 wt % IL increases slightly at 10 wt % and then finally decreasing. Variation of conductivity and relaxation frequency with composition could only be partly explained on the basis of variation of degree of crystallinity. An additional feature of ion–ion interaction (contact ion pair formation between IL or salt cations and their associated anions) has been invoked which was supported by FTIR studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
In this work, self‐assembly method was used to improve the dielectric constant of triblock copolymers. A series of ABA triblock copolymers with a defined length of poly(n‐butyl acrylate) (PBA, B block) segment and different lengths of liquid crystalline (LC) poly[11‐(4‐cyano‐4′‐biphenoxy)undecyl methacrylate] (P11CBMA, A block) segments were synthesized by using the atom transfer radical polymerization method. The well‐defined triblock copolymers P11CBMAmb‐PBAnb‐P11CBMAm possess three different B/A ratios (n = 50, m = 17, 43, 53). Due to the supramolecular cooperative motion effect, the copolymers can form worm‐like microstructure (WLC = 52.8%), cylinder‐like nanostructure with P11CBMA phase embedded in PBA matrix (WLC = 73.9%), and wide stripe structure with LC domains distributed unevenly in a continuous PBA matrix (WLC = 77.7%) after annealed at 160°C (above Ti) under N2 for 24 h, respectively. In order to study the influence of microphase separated morphology of triblock copolymer on the dielectric properties, solvent annealing was also used to develop various nanostructures. After thermal or solvent annealing, the dielectric constants of block copolymers increased dramatically while their loss factors remained the same. For different block copolymers, the dielectric constants increased with the increase of the LC block length. For diverse treatments, dielectric permittivities of samples varied widely with different nanostructures. The results show that the dielectric constants of block copolymers could be tuned by the block ratios and the self‐assembled microstructures. These findings will inspire researchers using self‐assembly method to design and develop novel flexible materials with high dielectric permittivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


8.
Three kinds of chiral saccharide‐containing liquid crystalline (LC) acetylenic monomers were prepared by click reaction between 2‐azidoethyl‐2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranoside and 1‐biphenylacetylene 4‐alkynyloxybenzoate. The obtained monomers were polymerized by WCl6‐Ph4Sn to form three side‐chain LC polyacetylenes containing 1‐[2‐(2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranos‐1‐yl)‐ethyl]‐1H‐[1,2,3]‐triazol‐4′‐biphenyl 4‐alkynyloxybenzoate side groups. All monomers and polymers show a chiral smectic A phase. Self‐assembled hiearchical superstructures of the chiral saccharide‐containing LCs and LCPs in solution state were studied by field‐emission scanning electron microscopy. Because of the LC behavior, the LC molecules exhibit a high segregation strength for phase separation in dilute solution (THF/H2O = 1:9 v/v). The self‐assembled morphology of LC monomers was dependent upon the alkynyloxy chain length. Increasing the alkynyloxy chain length caused the self‐assembled morphology to change from a platelet‐like texture ( LC‐6 ) to helical twists morphology ( LC‐11 and LC‐12 ). Furthermore, the helical twist morphological structure can be aligned on the polyimide rubbed glass substrate to form two‐dimensional ordered helical patterns. In contrast to LC monomers, the LCP‐11 self‐assembled into much more complicate morphologies, including nanospheres and helical nanofibers. These nanofibers are evolved from the helical cables ornamented with entwining nanofibers upon natural evaporation of the solution in a mixture with a THF/methanol ratio of 3:7. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6596–6611, 2009  相似文献   

9.
An easily removable, water‐soluble top coat of polyvinylpyrrolidone (PVP) is used to control the orientation of microdomains in a liquid crystalline block copolymer (LC BCP, poly(ethylene oxide)‐block‐poly(6‐(4‐methoxy‐azobenzene‐4′‐butyl) hexyl methacrylate)). The corresponding LC homopolymer is also investigated for comparison. Atomic force microscopy is used to determine the orientation of the cylindrical microdomains of the LC BCP. UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering are used to determine the orientation of the LC mesogens in the LC homopolymer and the LC BCP films annealed both with and without a top coat. Once the LC BCP morphology is self‐assembled, the PVP top coat layer can be easily removed with water or alcohol. The facile removal of the top coat improves the processability of BCPs in technological applications, and enables direct investigation of the BCP morphology in scientific studies. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1569–1574  相似文献   

10.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

11.
Optimal serum protein concentrations are vital for normal body functioning. Affordable while accurate protein quantification methods with minimum processing requirements are needed for diagnosis of related diseases. The standard automated chemistry analyzer is limited by high installation and maintenance costs. This study proposes the use of electrical impedimetric spectroscopy (EIS) as an alternative to current methods. Its practical applicability was tested using albumin and γ‐globulin or their miscellanea in three different media; water, serum and tissue‐mimicking phantoms at 25 °C. Impedance measurements were taken between frequency f=0.10 MHz to 300 MHz by an impedance analyzer. A Cole‐Cole analysis was used to elucidate the stepwise variations in the dielectric parameters of the protein medium so as to obtain empirical dielectric parameter‐protein concentration relationships and their correlation coefficients R2. From the results, linear relationships between parameters and protein concentrations with high correlation coefficients over R2=0.90 were observed. Resistance to charge transfer Rct and characteristic frequency fc were significantly altered by changing protein concentrations as compared to bulk solution resistance Rs, relaxation time constant τ and shape factor α. The relationships developed would aid in monitoring changes in body fluid protein concentrations by EIS.  相似文献   

12.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

13.
Nano-sized La1/2Nd1/2FeO3 (LNF) powder is synthesized by the sol–gel citrate method. The Rietveld refinement of the X-ray diffraction profile of the sample at room temperature (303 K) shows the orthorhombic phase with Pbnm symmetry. The particle size is obtained by transmission electron microscope. The antiferromagnetic nature of the sample is explained using zero field cooled and field cooled magnetisation and the corresponding hysteresis loop. A signature of weak ferromagnetic phase is observed in LNF at low temperature which is explained on the basis of spin glass like behaviour of surface spins. The dielectric relaxation of the sample has been investigated using impedance spectroscopy in the frequency range from 42 Hz to 1 MHz and in the temperature range from 303 K to 513 K. The Cole–Cole model is used to analyse the dielectric relaxation of LNF. The frequency dependent conductivity spectra follow the power law. The magneto capacitance measurement of the sample confirms its multiferroic behaviour.  相似文献   

14.
The synthesis of ω‐ and α,ω‐telechelics with sulfonate end groups through the sulfoalkylation of homopolymers and block copolymers of n‐butyl methacrylate and t‐butyl methacrylate with 1,3‐propane sultone is described. The polymerizations are initiated in tetrahydrofuran at −78 °C with either 1,1‐diphenyl‐3‐methylpentyllithium or dilithium 1,1,4,4‐tetraphenylbutane to obtain monofunctional or difunctional polymethacrylate anions, respectively. Narrow molecular weight distributions are obtained for the homopolymers and copolymers in the presence of LiCl in a 10/1 ratio relative to the initiator. The direct reaction of the poly(n‐butyl methacrylate) anions with the sultone results in low functionalization levels: f = 0.24–0.29 for the monofunctional anions and f = 0.32–0.35 for the difunctional anions. The reaction of the poly(t‐butyl methacrylate) anions or end‐capping of the poly(n‐butyl methacrylate) anions with t‐butyl methacrylate units before sulfoalkylation yields telechelics with f = 0.81–1.0 for the monofunctional anions and f = 1.74–1.94 for the difunctional anions. The telechelic polymers, purified by ultrafiltration, have been characterized by size exclusion chromatography, Fourier transform infrared, and 1H NMR spectroscopy. The yield of the sulfoalkylation reactions, determined by colorimetric analysis of a complex formed with methylene blue, is in good agreement with the results obtained by nonaqueous titration of the acidified telechelics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3711–3721, 2000  相似文献   

15.
Three novel liquid crystalline methacrylates have been synthesized and characterized to be tested as comonomers in light‐curing dental resin‐based composites. The selected formulations consist of an alkylammonium or cholesteryl urethane methacrylate and 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxypropyl)phenyl]propane (BisGMA) or a BisGMA derivate modified with urethane methacrylate groups, further diluted with triethyleneglycol dimethacrylate (TEGDMA) and reinforced with 70% filler (zirconium silicate nanopowder, silanized filler). This study addresses the relationships between the LC monomer structure, photopolymerization rates (by differential scanning photo calorimetry), and specific properties of the dental resin composites (volumetric shrinkage, water sorption, water solubility, and hydrophobicity). The investigation of LC properties by differential scanning calorimetry and polarizing microscopy indicated that the LC mesophase is stable to room temperature (cationic monomers) or at 40 °C (cholesteryl methacrylate). It was found that the polymerization rate for LC urethane methacrylates used in combination with BisGMA/TEGDMA (0.122–0.136 s?1) is higher than that of the mesogenic monomers alone (0.085–0.107 s?1). The structures of the urethane monomers and, consequently, the viscosity of the comonomer mixture influence both the rate and the degree of conversion (44.8–67.5 %) of the photopolymerization process. Polymerization shrinkage measured by pycnometry showed lower values for LC monomers (3.25–3.43 vol %) comparatively with the monomer mixture (5.19–6.65 vol %). Preliminarily, the effect of ammonium groups from two resin composites incorporating alkylammonium structures (4.5 wt %) was tested on Streptococcus mutans, and distinct zone of inhibition was observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
We report how the placement of nucleobase units, thymine, or N 6‐(4‐methoxybenzoyl)adenine, onto the ends of a mesogenic core, bis‐4‐alkoxy‐substituted bis(phenylethynyl)benzene, affects the properties of these materials. We show that addition of these bulky polar groups significantly reduces the range of liquid‐crystalline behavior of these compounds. However, mixing two complementary nucleobase‐containing AA‐ and BB‐type monomer units together does result in the formation of stable, thermotropic liquid‐crystalline (LC) phases. Hydrogen bonding is shown to play an important role in the formation of these LC phases, consistent with the formation of oligomeric or polymeric hydrogen‐bonded aggregates. X‐ray analyses of these mixed materials are consistent with the formation of smectic C phases.  相似文献   

17.
We formed a polypyrrole/p‐type silicon device by an anodization process. An aluminum electrode was used as an ohmic contact. From the current–voltage characteristics of the device, barrier height and ideality factor values of 0.662 eV and 1.734, respectively, were obtained from a forward‐bias current–voltage plot. Low capacitance–frequency and conductance–frequency measurements from 0.00 to 0.30 V with steps of 0.02 V were made. At each frequency, the measured capacitance decreased with increasing frequency because of a continuous distribution of the interface states in the frequency range of 5.0 Hz to 2.0 MHz. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1334–1338, 2003  相似文献   

18.
Liquid‐crystalline (LC) epoxy resins were cured at different temperatures to obtain polydomain LC phase–cured resins. The cured resins had polydomain structures with a nematic LC phase and their domain diameters differed depending on the curing temperatures. The relationship between the domain diameter and fracture toughness of the diglycidyl ether of terephthalylidene‐bis‐(4‐amino‐3‐methylphenol) (DGETAM)/m‐phenylenediamine (m‐PDA) systems with the nematic phase and the previously reported smectic LC phase structures was investigated. It was clarified that the highly ordered LC structure (smectic phase) in each domain could improve the fracture toughness. In addition, the changes in the network orientation of the DGETAM/m‐PDA systems were evaluated by a mapping of the microscopic infrared dichroism in the fracture process and their toughening mechanism was suggested. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

19.
A series of comb‐type polycarbosilanes of the type [Si(CH3)(OR)CH2]n {where R = (CH2)mR′, R′ = ? O‐p‐biphenyl? X [X = H (m = 3, 6, 8, or 11) or CN (m = 11)], and R′ = (CF2)7CF3 (m = 4)} were prepared from poly(chloromethylsilylenemethylene) by reactions with the respective hydroxy‐terminated side chains in the presence of triethylamine. The product side‐chain polymers were typically greater than 90% substituted and, for R′ = ? O‐p‐biphenyl? X derivatives, they exhibited phase transitions between 27 and 150 °C involving both crystalline and liquid‐crystalline phases. The introduction of the polar p‐CN substituent to the biphenyl mesogen resulted in a substantial increase in both the isotropization temperature and the liquid‐crystalline phase range with respect to the corresponding unsubstituted biphenyl derivative. For R = (CH2)11? O‐biphenyl side chains, an analogous side‐chain liquid‐crystalline (SCLC) polysiloxane derivative of the type [Si(CH3)(O(CH2)11? O‐biphenyl)O]n was prepared by means of a catalytic dehydrogenation reaction. In contrast to the polycarbosilane bearing the same side chain, this polymer did not exhibit any liquid‐crystalline phases but melted directly from a crystalline phase to an isotropic liquid at 94 °C. Similar behavior was observed for the polycarbosilane with a fluorocarbon chain, for which a single transition from a crystalline phase to an isotropic liquid was observed at ?0.7 °C. The molecular structures of these polymers were characterized by means of gel permeation chromatography and high‐resolution NMR studies, and the crystalline and liquid‐crystalline phases of the SCLC polymers were identified by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 984–997, 2003  相似文献   

20.
The synthesis and characterization of copolymers containing 2‐ethylhexyl methacrylate and a quadruple‐hydrogen‐bonding site, 2‐ureido‐4[1H]‐pyrimidone methacrylate (UPyMA), are described. An analogous dimeric hydrogen‐bond‐containing copolymer based on 2‐ethylhexyl methacrylate and methacrylic acid (PEHMA‐co‐MAA) was also synthesized for comparative purposes. The glass‐transition temperatures of the poly(2‐ethylhexyl methacrylate‐co‐2‐ureido‐4[1H]‐pyrimidone methacrylate) (PEHMA‐co‐UPyMA) series increased linearly with increasing UPyMA content. Creep compliance measurements as a function of temperature indicated a decrease in the creep compliance with increasing UPyMA content over the range of 1–10 mol % UPyMA. Melt rheological analysis also showed an increase and lengthening of the plateau modulus as a function of frequency with increasing UPyMA content, as well as increasing complex viscosity as a function of temperature. The analogous PEHMA‐co‐MAA copolymer, which contained 11 mol % methacrylic acid, showed, in the melt rheological analysis, behavior similar to that of the PEHMA‐co‐UPyMA copolymer containing only 1 mol % UPyMA units. The multiple‐hydrogen‐bond‐containing copolymers were successfully analyzed with time–temperature superposition for the construction of master curves. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4618–4631, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号