首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
热固性聚酰亚胺树脂是目前耐温等级最高的基体树脂之一, 以其为基础的复合材料在航空航天等领域有着广泛的应用。 本文对热固性聚酰亚胺树脂的研究进行了系统的综述, 并对其未来的发展方向进行了展望。  相似文献   

2.
A novel low‐temperature curing polytriazole resin was prepared from a triazide and a tetraalkyne and characterized. The resin can be cured at 70°C. The glass transition temperature Tg and thermal decomposition temperature Td5 of the cured resin with the molar ratio of azide to alkyne group [A]/[B] = 1.0:1.0 reached 324 and 355°C, respectively. The study on the curing kinetics of the resin shows that the apparent activation energy of the curing reaction is 93 kJ mol?1. The flexural strength of the cured resin reached 137.6 MPa at room temperature and 102.6 MPa at 185°C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
Ternary polycarbonate (PC)/amorphous polyamide–nanoclay (naPA) nanocomposite (PC/naPA) films were obtained by melt mixing and drawing, and the effects of the naPA content and the draw ratio (DR) on the structure, morphology and mechanical and barrier properties were studied. Despite the presence of nanoclay, the films exhibited a negligible roughness and the excellent optical properties of PC and amorphous polyamide (aPA). The dispersed naPA phase was pure and small, indicating compatibility. The naPA did not hinder the drawing ability of PC. At low DRs the dispersed phase was elongated and oriented along the machine direction (extrusion flow direction), but at high DRs, it fibrillated due to the higher non‐isothermal elongational flow induced by drawing. The laminar structure of the nanoclay allowed the films to be reinforced both in the machine and the transverse directions. The oxygen permeability of PC was reduced by 42% in the nanocomposite with 25% of naPA, and dropped further with the DR, which is attributed to the increased tortuosity of the oxygen path induced by fibrillation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
    
Recently, boron nitride (BN) based materials have received significant attention in both academic and industrial sectors due to its interesting properties like large energy band gap, good resistance to oxidation, excellent thermal conductivity, thermal stability, chemical inertness, significant mechanical property and widespread applications. This review article deals with the preparation and properties of boron nitride and its nanocomposites with various polymers. Diverse polymers have been explored for the preparation of boron nitride filled polymer nanocomposites by adopting different mixing methods. Properties of the resulting polymer nanocomposites mainly depend up on filler size and dispersion, mixing conditions and type of interaction between polymer matrix and the filler. Herein, the structure, preparation and properties of various boron nitride based polymer nanocomposites are reviewed in detail along with a brief overview of different classes of BN nanomaterials.  相似文献   

7.
An effective technique of using click coupled graphene to obtain high‐performance polymer nanocomposites is presented. Poly(ε‐caprolactone) (PCL)‐click coupled graphene sheet (GS) reinforcing fillers are synthesized by the covalent functionalization of graphene oxide with PCL, and subsequently the PCL‐GS as a reinforcing filler was incorporated into a shape memory polyurethane matrix by solution casting. The PCL‐click coupled GS has shown excellent interaction with the polyurethane matrix, and as a consequence, the mechanical properties, thermal stability, thermal conductivity, and thermo‐responsive shape memory properties of the resulting nanocomposite films could be enhanced remarkably. In particular, for polyurethane nanocomposites incorporated with 2% PCL‐GS, the breaking stress, Young's modulus, elongation‐at‐break, and thermal stability have been improved by 109%, 158%, 28%, and 71 °C, respectively. This click coupling protocol offers the possibility to fully combine the extraordinary performance of GSs with the properties of polyurethane. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

8.
A comparative study of the structural, thermal, mechanical and thermomechanical properties of ethylene-octene copolymer 1
  • 1 Ethylene-octene copolymer is produced using Dow's INSITETM ™ constrained geometry catalyst and process technology. ENGAGE the trade name of this copolymer.
  • (mPE) 2
  • 2 This copolymer will be represented as mPE .
  • nanocomposites synthesized with pure nanosilica (NS) and nanosilica-functionalized with diglycidyl ether of bisphenol-A (ENS) has been reported. These nanocomposites were prepared using “melt mixing” method at a constant loading level of 2.5 wt. %. The effects of pure nanosilica (NS) and epoxy resin-functionalized-nanosilica (ENS) on the above mentioned properties of ethylene-octene copolymer were analyzed by wide-angle-x-ray diffractometer (WAXD), transmission electron microscope (TEM), thermo gravimetric analyzer (TGA), differential scanning calorimeter (DSC), dynamic mechanical analyzer (DMA) and scanning electron microscope (SEM). TEM studies have shown a better dispersion of nanoparticles in case of ethylene-octene copolymer-epoxy resin-functionalized-nanosilica nanocomposite (mPE-ENS) than that of ethylene-octene copolymer-nanosilica nanocomposite (mPE-NS). The tensile tests show that organic modification of nanosilica particles brings up an appreciable increase in yield strength, ultimate tensile strength and elongation at break of the polymer. DMA studies have shown an increase in the storage modulus and glass transition temperature for mPE-ENS with respect to mPE-NS. Further, the TGA results have shown a higher thermal stability for mPE-ENS in comparison to mPE-NS.  相似文献   

    9.
    In order to achieve dramatic improvements in the performance of rubber materials, the development of carbon nanotube (CNT)‐reinforced rubber composites was attempted. The CNT/natural rubber (NR) nanocomposite was prepared through solvent mixing on the basis of pretreatment of CNTs. Thermal properties, vulcanization characteristics, and physical and mechanical properties of the CNT/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR composite. Through the addition of the CNTs treated using acid bath followed by ball milling with HRH (hydrated silica, resorcinol, and hexamethylene tetramine) bonding systems, the crystallization melting peak in differential scanning calorimetry (DSC) curves of NR weakened and the curing rate of NR slightly decreased. Meanwhile, the over‐curing reversion of CNT/NR nanocomposites was alleviated. The dispersion of the treated CNTs in the rubber matrix and interfacial bonding between them were rather good. The mechanical properties of the CNT‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR composite. At the same time, the CNT/NR nanocomposites exhibited better rebound resilience and dynamic compression properties. The storage modulus of the CNT/NR nanocomposites greatly exceeds that of neat NR and CB/NR composites under all temperature regions. The thermal stability of NR was also obviously improved with the addition of the treated CNTs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

    10.
    In the present work, zinc oxide nanoparticles were treated with aminopropyl trimethoxy silane‐coupling agent and used as a new kind of reinforcement for a typical high performance bisphenol‐A‐based phthalonitrile resin. The resulted nanocomposites were characterized for their mechanical, thermal, and optical properties. Results from the tensile test indicated that the tensile strength and modulus as well as the toughness state of the matrix were all enhanced with the increasing of the nanoparticles amount. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 800°C were highly improved upon adding the nanofillers. At 6 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced reaching about 359°C and 3.7 GPa, respectively. The optical tests revealed that the neat resin possesses excellent UV‐shielding properties, which were further enhanced by adding the nanofillers. Furthermore, the fractured surfaces of the nanocomposites analyzed by scanning electron microscope exhibited homogeneous and rougher surfaces compared with that of the pristine resin. Finally, the good dispersion of the reinforcing phase into the matrix was confirmed by a high resolution transmission electron microscope. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

    11.
    The main purpose of this work is to provide a comprehensive overview on the preparation of multifunctional epoxies, with improved antimicrobial activity and enhanced mechanical properties through nanomodification. In the first section, we focus on the approaches to achieve antimicrobial activity, as well as on the methods used to evaluate their efficacy against bacteria and fungi. Relevant application examples are also discussed, with particular reference to antifouling and anticorrosion coatings for marine environments, dental applications, antimicrobial fibers and fabrics, and others. Subsequently, we discuss the mechanical behaviors of nanomodified epoxies with improved antimicrobial properties, analyzing the typical damage mechanisms leading to the significant toughening effect of nanomodification. Some examples of mechanical properties of nanomodified polymers are provided. Eventually, the possibility of achieving, at the same time, antimicrobial and mechanical improvement capabilities by nanomodification with nanoclay is discussed, with reference to both nanomodified epoxies and glass/epoxy composite laminates. According to the literature, a nanomodified epoxy can successfully exhibit antibacterial properties, while increasing its fracture toughness, even though its tensile strength may decrease. As for laminates—obtaining antibacterial properties is not followed by improved interlaminar properties.  相似文献   

    12.
    The strong adhesion ability of mussel foot‐byssal proteins (Mfps) has inspired scientists to develop novel materials for strong and reversible adhesion, coating, antifouling, and many other applications. However, in many cases, the high costs and the tedious preparation steps of such bioinspired materials hamper the process to push them into practical application. Here a simple but effective way (one step) is presented to synthesize a mussel‐inspired glue from two cheap commercially available materials: polyvinyl alcohol (PVA) and 3,4‐dihydroxybenzaldehyde (DBA). This bioinspired hot curing adhesive exhibits a strong bonding ability as high as 17.3 MPa on stainless steel surfaces, which surpasses most of the commercially available adhesives.

      相似文献   


    13.
    Inspired by the molecular mechanics of mussel adhesive formation, a novel water‐soluble fluorescent macromolecule (polydopamine–polyethyleneimine (PDA–PEI)) is prepared by one‐pot copolymerization of dopamine (DA) and PEI. In this method, DA is polymerized to form PDA, which is then coupled with PEI mainly through Michael addition. The fluorescence property of PDA–PEI is mainly attributed to the Michael addition of PEI on the 5,6‐dihydroxyindole (DHI) units of PDA, where PEI can form hydrogen bonds with oxidative products such as DHI and force the DHI units to twist out of plane, resulting in a decrease in the intra‐ and intermolecular coupling of PDA. In addition, the influence of various metal cations on the fluorescence of the PDA–PEI copolymer is investigated. This work may facilitate the development of new strategies for controlling the emission characteristics of PDA.

      相似文献   


    14.
    Waterborne polymer/clay nanocomposites of methyl methacrylate and butyl acrylate have been prepared by miniemulsion polymerization. Two different commercial organically modified clays have been used: Cloisite 15A and Cloisite 30B. Nanocomposites with partially exfoliated structure, observed by wide‐angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) were obtained by batch miniemulsion polymerization with 2–4 wt.‐% clay and 30% solids content. The mechanical, thermal and permeation properties of the nanocomposites showed a substantial improvement. Furthermore, this approach has allowed the production of stable and coagulum free latex with solids content up to 42 wt.‐% with partially exfoliated structures.

      相似文献   


    15.
    A study was made on the effect of small amounts of organically modified clay on the morphology and mechanical properties of blends of low‐density polyethylene and polyamide 11 at different compositions. The influence of the filler on the blend morphology was investigated using wide angle X‐ray diffractometry, scanning and transmission electron microscopy and selective extraction experiments. The filler was found to locate predominantly in the more hydrophilic polyamide phase. Although such uneven distribution does not have a significant effect on the onset of phase co‐continuity of the polymer components, it brings about a drastic refinement of the microstructure for the blends both with droplets/matrix and co‐continuous morphologies. In addition to the expected reinforcing action of the filler, the resulting fine microstructure plays an important role in enhancing the mechanical properties of the blends. This is essentially because of a good quality of stress transfer across the interface between the constituents, which also seems to benefit for a good interfacial adhesion promoted by the filler. Our results provide the experimental evidence for the capabilities of nanoparticles added to multiphase polymer systems to act selectively as a reinforcing agent for specific domains of the material and as a medium able to assist the refinement of the polymer phases during mixing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 600–609, 2010  相似文献   

    16.
    Novel propargyl that contains phenolic resins via azo‐coupling reaction was synthesized. Peculiarities of curing process were investigated by differential scanning calorimetry analysis. Polymerization of resins with azo groups was estimated to be affected by radicals obtained at resin decomposition causing 10°C peak shift to lower temperatures in comparison with resin containing only propargyl group. At the same time, polymerization of triple propargyl bond was shown to not proceed at radical initiation until Cleisen rearrangement and chromene formation. Thermogravimetric analysis revealed increase of thermal stability by 170–190°C and char yield by up to 20% for modified resins in comparison with original novolac resin. Heat deflection temperature estimated by dynamic mechanical analysis was also shown to be increased by at least 110°C for modified resins in comparison with novolac resin. All the synthesized resins are soluble in acetone and used for preparation of unidirectional glass fiber‐based composites. Flexural strength and modulus for modified resins‐based composites were shown to increase by at least 25% and 10% correspondingly in comparison with novolac‐based composite. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

    17.
    Nine new kinds of thermosetting polymers with the Si(H)? C?C unit were synthesized by dehydrogenative polycondensation reactions between hydrosilanes and diethynyl compounds in the presence of a magnesia catalyst. Phenylsilane, silane, vinylsilane, and n‐octylsilane were used as the hydrosilanes, and 1,3‐diethynylbenzene, 1,4‐diethynylbenzene, 4,4′‐diethynyldiphenyl ether, and 1,3‐diethynyl‐1,1,3,3‐tetramethyldisiloxane were used as the diethynyl compounds. All the polymers were thermosetting, highly heat‐resistant, easily soluble in a solvent, and moldable. In particular, ? Si(R)H? C?C? C6H4? C?C? (R = H or CH?CH2) showed high thermal stability; the temperature of 5% weight loss was greater than 800 °C, and the residue at 1000 °C was over 90%. The thermal stabilities of the polymers were attributed to the crosslinking reaction of the Si? H and C?C bonds. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2658–2669, 2001  相似文献   

    18.
    In this study, the reinforcing mechanism of amine functionalized on carbon fibers (CFs) has been precisely discussed, and the differences between aliphatic and aromatic compounds have been illustrated. Polyacrylonitrile‐based CFs were functionalized with ethylenediamine, 4,4‐diaminodiphenyl sulphone, and p‐aminobenzoic acid (PAB), and CF‐reinforced epoxy composites were prepared. The structural and surface characteristics of the functionalized CFs were investigated using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), and scanning electron microscopy (SEM). Mechanical properties in terms of tensile and flexural strengths and moduli were studied. The FT‐IR results confirm the success in bonding amines on the CF surface. After treatment of CFs, the oxygen and nitrogen contents as well as the N/C ratio showed an increase. XPS results provided evidence of the chemical reaction during functionalization, rather than being physically coated on the CF surface. Chemical modification of CF with diamines led to considerable enhancement in compatibility of CF filaments and epoxy resin, and remarkable improvements were seen in both tensile and flexural properties of the reinforced composites. SEM micrographs also confirmed the improvement of interface adhesion between the modified CFs and epoxy matrix. Finally, it can be concluded that PAB is a promising candidate to functionalize CF in order to improve interfacial properties of CF/epoxy composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

    19.
    A nondestructive method was developed for grafting and retrieving polymer brushes from single‐walled carbon nanotubes (SWCNT)s based on mussel‐inspired chemistry. Thermo‐responsive polymer brushes were grafted on SWCNTs by coating the tubes with polydopamine as a reactive underlayer and sequential surface‐initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate (OEGMA, Mn = 475) and 2‐(2'‐methoxyethoxy)ethyl methacrylate (MEO2MA). Copolymer brushes were retrieved from the SWCNTs using 1 M NaOH to destroy the crosslinked polydopamine coating, and after that, the pristine properties of the SWCNTs were preserved. The low critical solution temperature (LCST) and molecular weight of the copolymer were measured using a nephelometer and gel permeation chromatograph, respectively. The loading and release behavior of Rhodamine 6G on responsive polymer‐grafted SWCNTs demonstrates that the copolymer brushes confer the SWCNTs an LCST dependence. This method can accurately confirm the molecular weights and polydispersity of stimuli‐responsive polymers grafted on any other nanoparticles and predict their controlled release behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1807–1814  相似文献   

    20.
    Copolymers of N‐isopropylacrylamide (NIPAM) and dopamine methacrylate can establish a reversible, self‐healing 3D network in aprotic solvents based on hydrogen bonding. The reactivity and hydrogen bonding formation of catechol groups in copolymer chains are studied by UV–vis and 1H NMR spectroscopy, while reversibility from sol to gel and inverse as well as self‐healing properties are tested rheologically. The produced reversible organogel can self‐encapsulate physically interacting or chemically bonded solutes such as drugs due to thermosensitivity of the used copolymer. This system offers dual‐targeted and controlled drug delivery and release—by slowing down release kinetics by supramolecular bonding of the drug and by reducing diffusion rates due to modulus increase.

      相似文献   


    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号