首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide (ZnO) nanoparticles are synthesized by polymeric sol–gel method and characterized by X-ray diffraction, field-emission scanning electron microscopy. The cure characteristics, mechanical properties and thermal behaviour of natural rubber (NR) systems containing nano ZnO are investigated and compared to those of NR with micro-sized (conventional) ZnO. The NR vulcanizate with 0.5 phr (parts per hundred parts of rubber) sol–gel derived nano ZnO shows improvement in the curing and mechanical properties in comparison to the NR vulcanizate with 5 phr conventional ZnO. Thermogravimetric analysis reveals that nano ZnO impose better thermal stability than conventional ZnO in the NR vulcanizates. Thus, nano ZnO not only acts as a curing activator but also nano filler to improve the resulting properties of the NR vulcanizates. More essentially nano ZnO leads to the reduction of ZnO level in the NR compounds. Therefore, sol–gel derived nano ZnO diminishes the pollution of aquatic environment due to higher amount of conventional ZnO in rubber compounds.  相似文献   

2.
The effects of high-temperature curing and overcuring on the cure characteristics, crosslink structure, physical properties and dynamic mechanical properties (DMPs) of gum and carbon black (N330) filled natural rubber (NR) vulcanizates cured with conventional (CV), semi-efficient (SEV) and efficient (EV) cure systems, which have about the same total crosslink densities under a moderate curing temperature of 150°C, were investigated. The gum NR vulcanizates cured with CV, SEV and EV curing systems have about the same glass transition temperature (Tg) and tan δ values below the temperature of about 0°C, but showed some apparent differences in the tan δ values increasing in the order CVG′ and tan δ values above Tg higher than those of the gum NR vulcanizates.

High-temperature curing and overcuring cause decreases to various extents in the cure plateau torque, Shore A hardness, 300% modulus and tensile strength, and lead to apparent changes in the DMPs. Typically, there is an increase in Tg of all three kinds of gum and N330-filled NR vulcanizates because of changes in the total crosslink densities and crosslink types. The CV vulcanizates show the most significant change in cure characteristics, physical properties and DMPs since the highest content of polysulfidic crosslinks appears in the CV vulcanizate, causing the highest level of reversion and having a dominant effect on the properties.  相似文献   


3.
The ultrasonic treatment of butyl rubber gum during extrusion with a grooved‐barrel ultrasonic reactor was carried out at a mean residence time of 3.6 s and at different ultrasonic amplitudes. Gel permeation chromatography, NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic and mechanical property measurements were performed. The changes in the structure, curing behavior, and physical properties of the gum were found to be highly dependent on the applied ultrasonic amplitude. In particular, the molecular weight of the treated gum decreased and the molecular weight distribution increased with the ultrasonic amplitude. The number of double bonds in the ultrasonically treated gum was less than that in the virgin gum. The dynamic properties of the ultrasonically treated gums also indicated the occurrence of degradation during the ultrasonic treatment. The tensile strength and modulus of the vulcanizates prepared from the treated gums were reduced in comparison with those of the virgin vulcanizate because of degradation. In contrast, the elongation at break was higher. However, no significant changes in the thermal stability between the virgin and treated gums and among the vulcanizates were observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 334–344, 2005  相似文献   

4.
Summary The paper discusses the results of thermal analysis and flammability of butadiene-acrylonitrile rubber, Perbunan NT 1845 of Bayer, cross-linked with iodoform. The properties of the iodoform vulcanizate have been compared with those of peroxide vulcanizate. The thermal analysis has been performed in air with use of a derivatograph under air and nitrogen atmosphere as well as dynamic scanning calorimetry (DSC). The flammability of vulcanizates has been determined by the method of oxygen index and in air. The toxicity of the thermal decomposition and combustion products of the vulcanizates under investigation has been also determined. Based on complementary examinations, DTA and DSC curves have been interpreted from the point of view of thermal transitions of the conventionally and non-conventionally cross-linked nitrile rubbers. The glass transition temperature of the cross-linked polymer both in cooling and heating has been determined.  相似文献   

5.
Ytterbium and lanthanum triflates were used as catalysts to cure diglycidylether of bisphenol A with different proportions of 1,3‐dioxan‐2‐one. The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing process. We observed the formation of a five‐membered cyclic carbonate that remains unreacted at the chain ends, because of an equilibrium process between the spiroorthocarbonates that had formed as intermediate species. The kinetics were studied by DSC experiments and analyzed with isoconversional procedures. The system catalyzed by ytterbium triflate had a higher curing rate. Thermogravimetric analysis and dynamic mechanical thermal analysis experiments were used to evaluate the properties of the materials obtained. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5799–5813, 2005  相似文献   

6.
Mechanical properties of partially hydrogenated natural rubber (HNR) vulcanizates were evaluated regarding their chemical structure and crystallizable nature of HNR, and are reported here, to the best of our knowledge, for the first time. HNRs of three levels of hydrogenation (20.6, 29.0, and 40.6 mol%) were successfully prepared by the chemical modification of natural rubber (NR) latex using N2H4 and H2O2 as reagents, in a sufficient amount for preparing sulfur‐crosslinked samples to be subjected to mechanical and structural measurements. The three HNR vulcanizates were found to be crystallizable upon stretching; it is noted that even 40.6 mol% hydrogenation did not prevent HNR vulcanizates from crystallization upon stretching, while their onset strain of crystallization was higher than that of NR vulcanizate. The hysteresis loss and residual strain up to a stretching ratio of 2 for the HNR vulcanizates tended to become larger with the increase in the degree of the hydrogenation. Tensile and dynamic mechanical properties of 20.6 mol% hydrogenated HNR vulcanizate were comparable to those of NR vulcanizate. From differential scanning calorimetry and temperature dispersion of dynamic modulus or loss, the glass transition temperatures of HNR vulcanizates were found to be almost the same as that of NR vulcanizate, which is also notable. The thermal stability of HNR vulcanizates was better than that of NR vulcanizate. Thus, this chemical modification seems to give a promising NR derivative whose properties can be equivalent or even better than the mother polymer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Ytterbium and lanthanum triflates were used as initiators to cure a mixture of diglycidylether of bisphenol A (DGEBA) and 5,5‐dimethyl‐1,3‐dioxane‐2‐one (DMTMC). The evolution of the curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing process. We observed the formation of a five‐membered cyclic carbonate, which remains unreacted at the chain ends because of an equilibrium process between the spiroortho carbonates that had formed as intermediate species and also the loss of CO2, which was quantified by thermogravimetry. The kinetics were studied by DSC and analyzed by isoconversional procedures. Thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA) experiments were used to evaluate the properties of the thermosets obtained. The phenomenological changes that take place during curing were studied and represented in a time‐temperature‐transformation (TTT) diagram. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4546–4558, 2006  相似文献   

8.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Effect of ZnO nanoparticles particles on the mechanical properties and the curing behavior of an epoxy nanocomposite were studied. Nanocomposites were prepared using different loadings of pre-dispersed ZnO nanoparticles having an average size of 40 nm. The surface topography and morphology of the nanocomposites were studied using atomic force microscope (AFM). The mechanical properties of nanocomposites were studied using analytical techniques including dynamic mechanical thermal analysis and micro-Vickers hardness. Effects of ZnO nanoparticles on the curing behavior of these nanocomposites were investigated utilizing isothermal and non-isothermal differential scanning calorimeter techniques. In addition, chemical compositions of coatings containing different ZnO nanoparticles contents were studied using a Fourier transform inferred. It was found that, ZnO nanoparticles can effectively influence the mechanical properties of epoxy coating. In addition, lower curing degrees, and therefore crosslinking density of epoxy coating including higher ZnO nanoparticles were obtained. This effect was completely different at low and high loadings of the particles.  相似文献   

10.
采用反式-1,4-丁二烯-异戊二烯共聚橡胶(简称反式丁戊橡胶,TBIR)改性航空轮胎侧胶[天然橡胶(NR)/顺丁橡胶(BR)(质量比80/20)],研究了NR/BR/TBIR混炼胶的结晶行为、力学性能、硫化特性及硫化胶的物理机械性能、动态力学性能和填料分散性.结果表明,相比NR/BR并用胶,结晶性TBIR的并用赋予NR/BR/TBIR混炼胶较高的格林强度和杨氏模量.NR/BR/TBIR混炼胶工艺正硫化时间延长,交联密度提高.TBIR用量范围内,NR/BR/TBIR硫化胶300%定伸应力提高7%,耐屈挠疲劳性能提高35%~50%,滚动阻力降低.m(NR)/m(BR)/m(TBIR)为80/10/10硫化胶具有更好的综合力学性能及耐热氧老化性能.随着硫化时间的延长,NR/BR/TBIR(80/10/10)硫化胶较NR/BR(80/20)硫化胶100%定伸应力提高18%以上,NR/BR体系的耐屈挠疲劳性降低近60%,而NR/BR/TBIR(80/10/10)体系仍能保持原来的50%;反映滚动阻力的60℃损耗因子降低8%~14%,反映抗湿滑性的0℃损耗因子保持不变.填料分散度得到改善,填料聚集体尺寸降低.NR/BR/TBIR(80/10/10)硫化胶具有更好的耐长时间硫化的特性.  相似文献   

11.
The radiation crosslinking of poly(L ‐lactide) (PLLA) was investigated using triallyl isocyanurate (TAIC) as a crosslinking agent. The gel fraction of crosslinked PLLA increased with TAIC concentration and γ‐ray dose. Crosslinking of PLLA started at low TAIC contents and low γ‐ray dosage. Differential scanning calorimetry and dynamic mechanical thermal analysis revealed that PLLA was completely crosslinked at high weight ratios and high γ‐ray doses.  相似文献   

12.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

13.
High performance ethylene-vinyl acetate copolymer (EVM) vulcanizate was obtained by directly blending EVM with magnesium methacrylate (MDMA) at a high level. The mechanical properties and crosslink density of the peroxide-cured EVM vulcanizates were investigated. Dynamic mechanical thermal analysis (DMTA) was used to study dynamic properties of EVM reinforced by MDMA. The results showed that the commercial MDMA can greatly improve the modulus at 100% and tensile strength of the EVM vulcanizates, while retaining their high elongation at break. DMTA results revealed that the glass transition temperature (Tg) of the vulcanizate shifted to lower temperature with the increase of MDMA loading. Fourier transform infrared (FTIR) spectrum indicated that the double bonds in MDMA reacted after peroxide curing. Crosslink density analysis showed that EVM vulcanizate contained both ionic bonds and covalent bonds. Ionic crosslinks greatly increased with increasing amount of MDMA and dicumyl peroxide (DCP).  相似文献   

14.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

16.
In the past decades, 4‐phenylethynyl phthalic anhydride (4‐PEPA) has been the most important endcapper used for thermoset polyimide. As the isomer of4‐PEPA, 3‐phenylethynyl phthalic anhydride (3‐PEPA) has attracted our interest. In this article, 3‐PEPA was synthesized and a comparative study with 4‐PEPA on curing temperature, curing rate, thermal and mechanical properties of oligomers and cured polymers was presented. The new phenylethynyl endcapped model compound, N‐phenyl‐3‐phenylethynyl phthalimide, was synthesized and characterized. The molecular structure of model compound was determined via single‐crystal X‐ray diffraction and the thermal curing process was investigated by Fourier transform infrared. Differential scanning calorimetry clearly showed that the model compound from 3‐PEPA had about 20 °C higher curing onset and peak temperature than the 4‐PEPA analog. This result was further proved by the dynamic rheological analysis that the temperature of minimum viscosity for oligomers end‐capped with 3‐PEPA was above 20 °C higher than that of the corresponding 4‐PEPA endcapped oligomers with the same calculated number average molecular weight. The cured polymer from 3‐PEPA displayed slightly higher thermal oxidative stability than those from 4‐PEPA by thermogravimetric analysis. The thermal curing kinetics of 3‐PEPA endcapped oligomer (OI‐5) and 4‐PEPA endcapped oligomer (OI‐6) fitted a first‐order rate law quite well and revealed a similar rate acceleration trend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4227–4235, 2008  相似文献   

17.
《先进技术聚合物》2018,29(4):1294-1302
For the sake of improving the flame retardancy of epoxy resin (EP), a novel phosphorus‐containing phenolic resin (PPR) synthesized in our group instead of conventional phenolic resin (PR) was used to cure EP in the present research. The curing processes and the corresponding crosslinking structure and mechanical performance were investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. Because of the introduction of flame‐retarding elements including P and Si, PPR exhibited higher charring capacity in the condensed phase, which is helpful to construct a char layer of higher quality. Correspondingly, PPR‐cured EP displayed remarkably improved flame retardance as compared to conventional PR‐cured EP through the related evaluations including limiting oxygen index, vertical burning test, and microscale combustion colorimeter. As a multifunction agent, it is believable that PPR possesses potential commercial value to prepare flame‐retardant EP with high performance.  相似文献   

18.
An environmental friendly approach for partial de‐crosslinking of post‐vulcanized fluoroelastomer (FKM) scraps through high‐shear mechanical milling has been developed for recycling of the FKM. The method not only overcomes the expensive use and recovery of organic solvents but also gives rise to reclaimed rubbers with superior mechanical properties. After 32 cycles of milling, the gel fraction of FKM decreased from its original 97.8% to 79.7%. The appearance of the –CF2‐associated peaks C1s spectra after mechanical milling confirmed the partial de‐crosslinking of FKM. The structure change of FKM sol part before and after mechanical milling was also investigated by Fourier transform infrared (FTIR) analysis and gel permeation chromatography (GPC) measurements. The reclaimed FKM exhibited excellent mechanical and thermal properties, indicating a strong potential for future applications. The tensile strength of FKM re‐vulcanizates is 6.6 MPa, retaining about 84% properties of virgin FKM vulcanizates (7.9 MPa), and the elongation at break was increased from 337.1% to 368.7%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Novel biobased epoxy resins were prepared from two fatty acid derivatives; epoxidized 10‐undecenoyl triglyceride and epoxidized methyl 3,4,5‐tris(10‐undecenoyloxy)benzoate, with 4,4′‐diaminodiphenylmethane as a crosslinking agent. The flame retardancy of these epoxy resins was improved by the addition of 10‐[2′, 5′‐bis(9‐oxiranyl‐nonayloxy)phenyl]‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and by crosslinking with a phosphorus‐containing curing agent, bis(m‐aminophenyl)methylphosphine oxide. The thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured with differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and the limiting oxygen index. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6717–6727, 2006  相似文献   

20.
Bis(diisopropyl)thiophosphoryl disulfide (DIPDIS) has been used as a coupling cum curing agent for the compatibilization of blends of ethylene propylene diene monomer rubber (EPDM) with chloroprene rubber (CR). Electrical and mechanical properties of the blend vulcanizates have been studied to find the efficiency of the vulcanizing cum coupling activity of DIPDIS. The study reveals that CR in the presence of DIPDIS greatly improves the physical properties of EPDM. It is noted that the physical properties of the vulcanizates obtained from CR‐EPDM blend depend upon CR:EPDM ratio. The scanning electron microscopy (SEM) study reveals that it is possible to form a coherent blend of CR and EPDM in the presence of DIPDIS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号