首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

2.
《先进技术聚合物》2018,29(8):2174-2183
The present study deals with the immobilization of ZnO nanoparticles (NPs) as nanofiller inside poly(vinyl alcohol) (PVA) by solution casting method which is a low‐cost, environmental‐friendly, and rapid method of sonochemistry. Firstly, the surface of ZnO NPs was treated by bovine serum albumin (BSA) in the phosphate‐buffered solution under ultrasonic cavitation. Three diverse polymeric nanocomposites (NCs) are formed by changing the percentage of ZnO@BSA NPs (3, 6, and 9 wt%) with same amount of PVA. The structure properties, morphology, and thermal stability of prepared NCs were determined through Fourier transform‐infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy (EDX) and optical UV‐Visible spectrum, transmission electron microscopy (TEM), and field emission scanning electron microscopy. The presence and the dispersal of the ZnO@BSA NPs in the PVA matrix were recognized by TEM. In the X‐ray diffraction analysis, the values of mean particle size using Debye‐Scherrer equation were estimated in the range 4 to 6 nm that is almost in agreement with TEM analysis. Increase of 14% in thermal stability and also increase of more than 2‐fold of the tensile strength of PVA/ZnO@BSA NC 9 wt% in respect to the pure PVA showed that the modified NPs well dispersed within PVA and attached to it.  相似文献   

3.
Green polymer nanocomposites (NCs) show unique properties of combining the advantages of nanofillers and organic polymers. In this study, in order to control the dispersion of nanoparticles (NPs) in a polymer matrix, first, poly(vinyl alcohol) (PVA) as a green modifier was grafted on the surface of the CuO NPs to obtain CuO-PVA nanohybrid. Then poly(amide-imide) (PAI) was synthesized by the direct step growth polymerization of N-trimellitylimido-L-valine and 4,4′-methylenebis(3-chloro-2,6-diethylaniline) in ionic liquid medium. Finally, CuO-PVA hybrids were incorporated into the PAI matrix using ultrasonic technique for the preparation of PAI/CuO-PVA NCs. The obtained PAI/CuO-PVA NCs were characterized by different methods. The results of thermogravimetric analysis showed that thermal stability of the NCs was enhanced by incorporation of CuO-PVA nanohybrid compared to the pure PAI.  相似文献   

4.
The present work describes preparation of modified alumina with biocompatible, water soluble, and treating agents such as citric acid and ascorbic acid. Also, the influence of the modified nanoparticles (NPs) into the blend of poly(vinyl alcohol)@poly(vinyl pyrrolidone) (50/50) matrix was studied. At first, citric acid and ascorbic acid as environmental friendly agents were grafted on the surface of Al2O3 NPs. Then, nanocomposites (NCs) with different amounts of modified Al2O3 NPs were prepared via a simple ultrasonic method. The characterizations of the molecular structure of the NCs specified that chemical and physical interactions happened between inorganic and organic counterparts. The mutual effect of modified NPs into the polymer matrix was investigated on the structural, interfacial interaction, thermal stability, and optical properties. The results from morphological characterization confirmed changes in morphology of poly(vinyl alcohol) and poly(vinyl pyrrolidone) after loading NPs. Uniform dispersion of modified spherical Al2O3 NPs powders into the matrix of 50/50 polymers was detected by field emission scanning electron microscopy and energy‐dispersive X‐ray. Adding M‐NPs into the polymer matrix expressively improved the thermal stability of NCs. Peaks in ultraviolet–visible spectra were shifted to the higher absorption. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In the present study copper oxide nanoparticles (CuO NPs) were synthesized using a hydrothermal method with ranolazine as a shape-directing agent. Ranolazine-functionalized CuO NPs were characterized by various analytical techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The SEM pattern confirmed the morphology of ranolazine-functionalized CuO NPs with well-defined rice-like structures. FTIR spectroscopy confirmed the interaction between CuO NPs and ranolazine. The XRD analysis indicated that the structure of ranolazine-functionalized CuO NPs was monoclinic crystalline and the size ranged between 9 and 18 nm with an average particle size of 12 nm. The smaller size range of CuO NPs gave a large surface area that enhanced the efficiency of these catalysts employed for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the H 2 O system. In homogeneous catalysis, results showed that 50 μL of CuO NPs was required in the presence of NaBH4 for 99% reduction of 4-NP in 240 s. On the other hand, for heterogeneous catalysis, 0.5 mg of CuO NPs was used in the presence of NaBH4 for 99% catalytic reduction of 4-NP to 4-AP in 320 s. The rate of reaction for homogeneous catalysis and heterogeneous catalysis was determined from the plots of In(Ct /C0) of 4-NP versus time (s), which showed good linearity with values of 1.3 × 10 -2 and 8.8 × 10 -3 s -1 . respectively. The high-quality catalytic efficiency, good reusability, nontoxic nature, and low cost are favorable properties of the synthesized CuO NPs for use as efficient catalysts for reduction of 4-AP to 4-NP in both homogeneous and heterogeneous media.  相似文献   

6.
《先进技术聚合物》2018,29(6):1834-1842
Fabrication, characterization, and properties of novel poly(benzimidazole‐amide)/functionalized ZnO nanocomposites (PBIA/APS‐ZnO NCs) were investigated. At first, an aromatic PBA containing 3 imidazole units per repeat unit was synthesized by direct polycondensation of 1,3‐bis(5‐carboxylic acid‐2‐benzimidazole)benzene (BCAB) with 5‐(2‐benzimidazole)‐1,3‐phenylenediamine (DAMI) with good yield as a polymeric matrix. The periphery of zinc oxide nanoparticles (ZnO NPs) was modified with 3‐aminopropyltriethoxysilane (APS) to have a better dispersion NPs and enhancing interactions between nanoparticles and PBIA matrix. Different percentages of functionalized NPs (0, 4, 8, and 12 wt.%) were then embedded in PBA matrix through ultrasonic irradiation technique. Fourier transform infrared and thermo‐gravimetric analysis (TGA) confirmed that APS was successfully attached on the ZnO NP surface. The obtained NCs were characterized by means of Fourier transform infrared, X‐ray diffraction, scanning electron microscopy, and TGA. The TGA of the PBIA/APS‐ZnO NCs showed the enhancement in the thermal stability in comparison with the neat PBIA and that this increase is higher when the NP content increases. Scanning electron microscopy analyses of NCs revealed that the dispersion of APS‐ZnO NPs was uniformly done in the PBIA matrix.  相似文献   

7.
《Electroanalysis》2017,29(8):1854-1859
A carbon paste electrode modified with 1‐butyl‐3‐methylimidazolium hexafluorophosphate ionic liquid (BMIPF6) and CuO nanoparticles (CuO/NPs) (CPE/BMIPF6/CuO/NPs) was fabricated and used for square wave voltammetric analysis of levodopa in the presence of vitamin B6. The elemental analysis, SEM and XRD methods were used for characterization of synthesized CuO nanoparticle. CPE/BMIPF6/CuO/NPs exhibited high electrical conductivity toward the electro‐oxidation of levodopa at a pH=7.0 as best experimental condition. Using CPE/BMIPF6/CuO/NPs the levodopa and vitamin B6 peaks are separated and oxidized at potentials of 0.565 V and 0.835 V, respectively; hence levodopa can be detected in the presence of vitamin B6. The electrochemical response shows a linear relationship from concentration of levodopa and vitamin B6 in the ranges of 0.06‐1000 μM and 0.1‐700.0 μM, respectively. Finally, CPE/BMIPF6/CuO/NPs were applied as high performance tool for determination of levodopa and vitamin B6 in real samples.  相似文献   

8.
To study the effect of the various ratios of poly(amide–imide)/Al2O3 nanocomposites (PANC)s on the mechanical and thermal properties of nanocomposites films, poly(vinyl alcohol) (PVA)/PANCs based on various ratios of 2, 4, and 6 wt% were prepared and characterized. In the first step, the surface of alumina nanoparticles was treated with 15 wt% of biosafe diacid and consequently, about 10 wt% of these modified nanoparticles were loaded into the poly(amide–imide) matrix. Then, various contents of the obtained PANCs were incorporated into a PVA solution using a sonochemical treatment. The effects of PANC on the structure and morphology of PVA matrix were studied using powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and thermal gravimetric analysis (TGA). The results show that the tensile strength and decomposition temperature were improved as the portion of PANC into PVA matrix are increased from 2 to 6 wt%. Also, AFM pictures of the fracture surfaces of PVA/PANCs showed a significantly rougher surface than the neat PVA.  相似文献   

9.
Abstract

The present study reports ecofriendly synthesis of CuO nanoparticles (NPs) using an extract of Rhus punjabensis as a reducing agent. NPs structural and composition analysis are evaluated by X-rays diffraction (XRD), Fourier transform infrared, Energy dispersive spectroscopy, Scanning electron microscopy, Transmission electron microscopy, and Thermal analysis. The NPs have pure single phase monoclinic geometry with spherical structure and high stability toward heat and with average particle size of about 36.6 and 31.27?nm calculated by XRD and SEM, respectively. NPs are tested for antibacterial, protein kinase (PK) inhibition, SRB cytotoxic, and NF-κB activities. Antibacterial activity is observed against B. subtilis and E. coli. Significant PK and SRB cytotoxic activity is observed with some NF-κB inhibition. NPs IC50 values against HL-60 and PC-3 prostate cancer cells are 1.82?±?1.22 and 19.25?±?1.55?μg/mL. The results encourage further studies for antibacterial and anticancer drug development of NPs using animal models.  相似文献   

10.
Covalent surface functionalization of synthesized ZnO nanoparticles (NP)s with ethylenediaminetetraacetic acid (EDTA) was successfully carried out. Modified ZnO‐EDTA NPs as a viable and inexpensive filler were incorporated into poly(vinyl chloride) PVC matrix after their chemical modification to investigate the agglomeration behavior. All prepared materials including modified NPs and PVC/ZnO‐EDTA nanocomposites (NC)s were analyzed by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. Fabricated PVC/ZnO‐EDTA NCs were reported to have high transparency and improved mechanical properties compared with PVC. Modified ZnO and the fabricated NCs were shown to exhibit excellent antibacterial activity against two bacteria species: Escherichia coli and Staphylococcus aureus. The obtained NCs could be considered as self‐extinguishing materials on the basis of the LOI values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Biogenic metal oxide nanoparticles (NPs) have emerged as a useful tool in biology due to their biocompatibility properties with most biological systems. In this study, we report the synthesis of copper oxide (CuO), zinc oxide (ZnO) nanoparticles (NPs), and their nanocomposite (CuO–ZnO) prepared using the phytochemical extracts from the leaves of Dovyalis caffra (kei apple). The physicochemical properties of these nanomaterials were established using some characterization techniques including X-ray diffraction analysis (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The XRD result confirmed the presence of a monoclinic CuO (Tenorite), and a hexagonal ZnO (Zincite) nanoparticles phase, which were both confirmed in the CuO–ZnO composite. The electron microscopy of the CuO–ZnO, CuO, and ZnO NPs showed a mixture of nano-scale sizes and spherical/short-rod morphologies, with some agglomeration. In the constituent’s analysis (EDX), no unwanted peak was found, which showed the absence of impurities. Antioxidant properties of the nanoparticles was studied, which confirmed that CuO–ZnO nanocomposite exhibited better scavenging potential than the individual metal oxide nanoparticles (CuO, and ZnO), and ascorbic acid with respect to their minimum inhibitory concentration (IC50) values. Similarly, the in vitro anticancer studies using MCF7 breast cancer cell lines indicated a concentration-dependent profile with the CuO–ZnO nanocomposite having the best activity over the respective metal oxides, but slightly lower than the standard 5-Fluorouracil drug.  相似文献   

12.
利用改进的Hummers 法制备GO,采用化学沉淀法合成CuO/GNS复合材料,用X 射线衍射(XRD)、扫描电镜(FESEM)、比表面积测试(BET)等表征了产物的组成、结构和形貌;用循环伏安、恒电流充放电等测试方法对复合材料的电化学性能进行了研究。结果显示:在这种复合材料中,石墨烯作为导电骨架,有利于增加氧化铜颗粒之间的导电性和材料的机械稳定性。大电流放电表现出优异的电化学性能,在 10 A.g-1的电流密度下复合材料的比电容仍可达 276 F.g-1,1000 次循环后比电容仍能保持86.5%,呈示该复合材料具有优异的电化学性能。  相似文献   

13.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

14.
The present research highlights physical significance of green combination of metal oxide nanomaterials utilizing medicinal plant which has widely analyzed in different medical applications i.e., medicinal science, therapeutics. In this paper, we discussed environmentally benign approach for synthesizing silver doped copper oxide nanoparticles (Ag–CuO NPs) utilizing (ACLE). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were utilized to confirm the size, crystalline structure and surface morphology of the obtained nanomaterials. The monoclinic crystalline structure of the Ag–CuO NPs as produced was revealed by XRD patterns. Morphological analysis disclosed the nano-based spherical configuration of Ag–CuO NPs, as well as their morphology and elemental composition. The anti-diabetic effect of Ag–CuO NPs was further investigated utilizing a yeast cell model and amylase inhibition. Here, a decrease in intracellular glucose and a delay in carbohydrate digestion indicate promising antidiabetic action. Furthermore, the prepared nanomaterial showed anticancer potential against the MCF-7 cancer cell line, with an IC 50 value of 11.21 g/ml.  相似文献   

15.
An easy pathway to synthesize a variety of cupric oxide (CuO) nanoshapes by a one-step wet chemical method is reported. CuO nanoparticles and nanorods were obtained from CuCl2 in a mixture of water and DMSO in the absence of a base at room temperature. 1-D CuO nanostructures resembling wires inside tubes, or nanopea pods, were shaped when polyamidoamine (PAMAM) dendrimers of generation 2 (16-NH2 end groups) or 2.5 (32-COO? end groups) were added to the CuO colloids. The evolution in time of the different nanostructures was followed by UV–visible spectroscopy. The XRD patterns, Raman spectroscopy and high-resolution transmission electron microscopy show clear evidence that all nanoshapes obtained in this work are composed by CuO. This method is a simple, versatile, and economical alternative for the fabrication of CuO nanostructures and might provide a practical reference for the controlled synthesis of other nanoarchitectures.  相似文献   

16.
The placenta is an important organ that maintains a healthy pregnancy by transporting nutrients to the fetus and removing waste from the fetus. It also acts as a barrier to protect the fetus from hazardous materials. Recent studies have indicated that nanoparticles (NPs) can cross the placental barrier and pose a health risk to the developing fetus. The high production and widespread application of copper oxide (CuO) NPs may lead to higher exposure to humans, raising concerns of health hazards, especially in vulnerable life stages, e.g., pregnancy. Oxidative stress plays a crucial role in the pathogenesis of adverse pregnancy outcomes. Due to its strong antioxidant activity, dietary curcumin can act as a therapeutic agent for adverse pregnancy. There is limited knowledge on the hazardous effects of CuO NPs during pregnancy and their mitigation by curcumin. This study aimed to investigate the preventive effect of curcumin against CuO NP-induced toxicity in human placental (BeWo) cells. CuO NPs were synthesized by a facile hydrothermal process and characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence techniques. We observed that curcumin did not induce toxicity in BeWo cells (1–100 µg/mL for 24 h), whereas CuO NPs decreased the cell viability dose-dependently (5–200 µg/mL for 24 h). Interestingly, CuO NP-induced cytotoxicity was effectively mitigated by curcumin co-exposure. The apoptosis data also exhibited that CuO NPs modulate the expression of several genes (p53, bax, bcl-2, casp3, and casp9), the activity of enzymes (caspase-3 and -9), and mitochondrial membrane potential loss, which was successfully reverted by co-treatment with curcumin. The mechanistic study suggested that CuO-induced reactive oxygen species generation, lipid peroxidation, and higher levels of hydrogen peroxide were significantly alleviated by curcumin co-exposure. Moreover, glutathione depletion and the lower activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were effectively mitigated by curcumin. We believe this is the first report exhibiting that CuO-induced toxicity in BeWo cells can be effectively alleviated by curcumin. The pharmacological potential of dietary curcumin in NP-induced toxicity during pregnancy warrants further investigation.  相似文献   

17.
To prevent SiO2 nanoparticles (SNPs) from aggregation, surface modification of them was performed using bio-safe citric acid (CA) and L(+)-ascorbic acid (vitamin C) for the first time. After that, NC films of well-dispersed modified SiO2(Mod-SiO2) in a poly(vinyl alcohol) (PVA) matrix (PVA/Mod-SiO2) were prepared using the solution casting method. The prepared NC films loaded with different mass fractions (4, 8, and 12 wt.%) of Mod-SiO2 were analyzed by several techniques. Field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) showed that Mod-SiO2 with sizes ranging between 23–27 nm is dispersed in the PVA matrix. With thermogravimetric analysis (TGA) the amount of attached modifiers was estimated at 13 wt.%. TGA results also indicated that the incorporation of Mod-SiO2 in the PVA matrix can improve its thermal stability.  相似文献   

18.
采用低温水热法在掺氟SnO2 (FTO)导电玻璃表面制备ZnO纳米阵列, 研究了前驱体溶液浓度摩尔配比对ZnO纳米阵列形貌、光学性能及其生长机理的影响. 研究发现, 随着前驱体溶液浓度摩尔配比的增加, ZnO纳米阵列形貌及光学性能也随之变化. ZnO纳米阵列高度逐渐降低, ZnO纳米阵列直径和光学带隙值大体上出现先增大后降低的趋势. 而当前驱体溶液(Zn(NO3)2:环六亚甲基四胺(HMT, C6H12N4))浓度摩尔配比为5:5时, 其光学禁带值(3.2 eV)接近于理论值. 结果显示制备ZnO纳米阵列的最优浓度摩尔配比为5:5. 随后选用最优浓度摩尔配比下制备的ZnO纳米阵列为基底, 通过一种两步溶液法成功在其表面制备刺突状CuO/ZnO异质结.从场发射扫描电镜(FE-SEM)结果中可以清楚看见, 大量的CuO纳米粒子沉积在ZnO纳米阵列表面形成刺突状异质结结构.研究发现该CuO/ZnO纳米异质结相对于纯ZnO纳米阵列在紫外光下光催化性能明显增加. 最后, 讨论了CuO/ZnO纳米异质结光催化机理.  相似文献   

19.
In the present investigation, novel poly(amid-imide)/zinc oxide nanocomposites (PAI/ZnO NCs) containing benzoxazole and benzimidazole pendent groups with different amounts of modified zinc oxide nanoparticles (ZnO NPs) were successfully prepared via the ex situ method. Poly(amid-imide) (PAI) was prepared by direct polycondensation of 2-[3,5- bis(N-trimellitimidoyl)phenyl]benzoxazole (DCA) with 5-(2-benzimidazole)-1,3-phenylenediamine (DAMI) and provided the polymeric matrix with well-designed groups. The surface of ZnO NPs was functionalized with 3-aminopropyltriethoxysilane (APS) coupling agent to have a better dispersion and enhancing possible interactions of NPs with functional groups of polymer matrix. The amount of APS bonded to the ZnO surface was determined by thermogravimetric analysis. PAI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. In addition, TGA data indicated an enhancement of thermal stability of the nanocomposite compared with the neat polymer.  相似文献   

20.
In this study, graphene oxide was modified during consecutive functionalization steps with 1,4-diphenylamine, cyanuric chloride, and ethylenediamine. Then, star-shaped CuO nanoparticles were synthesized on modified graphene oxide using the seed-mediated growth method in which nucleation, growth stages, and reduction of graphene oxide to graphene occurred simultaneously. After ensuring successful synthesis of CuO nanoparticles and to facilitate recycling, a magnetization process was utilized by adding iron oxide nanoparticles. This nanocomposite was characterized by transmission electron microscopy, X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The prepared heterogeneous catalyst was investigated for the reduction of organic dyes in the presence of NaBH4 as a reducing reagent. The kinetic data obtained for the reduction of methyl orange (MO), methylene blue (MB), 4-nitrophenol (4-NP), and rhodamine 6G (Rh6G) were fitted to first-order rate equations, and the calculated rate constants for the reduction of MO, MB, 4-NP and Rh6G were as follows: −0.091, −0.071, −0.045, and 0.040, respectively. As star-shaped CuO nanoparticles showed a higher antibacterial effect compared to spherical-shaped CuO nanoparticles, the antibacterial activity of star-shaped CuO nanoparticles immobilized on magnetic functionalized graphene was evaluated against Gram-positive and Gram-negative bacteria through an agar well diffusion assay and demonstrated more antibacterial activity against gram-positive bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号