共查询到20条相似文献,搜索用时 0 毫秒
1.
Honeycomb monolith structured porous poly (L‐lactic acid, PLA) was simply fabricated by employing a unidirectional freeze‐casting technique. Dimethyl sulfoxide (DMSO) was used as a solvent for PLA, and the solution was unidirectionally frozen. The DMSO was nucleated in the solution and was grown in the freezing direction. The PLA was solidified and structured with the DMSO crystal as a template. Then DMSO was leached by water, ethanol, or the mixture of them, and subsequently the porous PLA was dried by oven. It was found that the freeze‐casting protocol can significantly influence the morphological features such as the tube diameter and wall thickness of tube can be tuned by varying of PLA concentration, freezing temperature, and the nature of leaching solvent. Because DMSO has a special solubility of a number of polymers, this method may be a general way for designing and preparing aligned porous materials. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
Preparation of emulsion‐templated fluorinated polymers and their application in oil/water separation
《Journal of polymer science. Part A, Polymer chemistry》2018,56(14):1508-1515
A series of emulsion‐templated fluorinated polymers (polyHIPEs) were first synthesized with introducing 2‐(perfluorohexyl)ethyl methacrylate (PEM) to the external phase of water‐in‐styrene high internal phase emulsion (HIPE) templates. The morphology (i.e., void size and its distribution) of these porous materials could be tuned simply by changing PEM and/or surfactant amount. The synergistic effect between the surface chemistry and surface architecture allowed the polyHIPEs to possess hydrophobicity with a water contact angle of 151°. The superhydrophobicity and oleophilicity of the polyHIPEs, together with their highly open porous structure, make the material a very competitive candidate as a filtration material for oil/water separation in practice with the efficiency of separating dichloromethane from the oil/water mixture of 95%. Such oil/water separating capacity was maintained after 10 cycles of filtration of oil/water, indicating the cyclic usage of the polyHIPE is feasible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1508–1515 相似文献
3.
Porous polylactide (PLA) microspheres were fabricated by an emulsion‐solvent evaporation method based on solution induced phase separation. Scanning electron microscopy (SEM) observations confirmed the porous structure of the microspheres with good connectivity. The pore size was in the range of decade micrometers. Besides large cavities as similarly existed on non‐porous microspheres, small pores were found on surfaces of the porous microspheres. The apparent density of the porous microspheres was much smaller than that of non‐porous microspheres. Fabrication conditions such as stirring rate, good solvent/non‐solvent ratio, PLA concentration and dispersant (polyvinyl alcohol, PVA) concentration had an important influence on both the particle size and size distribution and the pore size within the microspheres. A larger pore size was achieved at a slower stirring rate, lower good solvent/non‐solvent ratio or lower PLA concentration due to longer coalescence time. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
4.
The macroporous polydivinylbenzene/poly(methyl acrylate) interpenetrating polymer network (PDVB/PMA IPN) was prepared by the sequential suspension polymerization method, and was modified to be hydrophobic–hydrophilic macroporous polydivinylbenzene/poly (sodium acrylate) IPN (PDVB/PNaA IPN) by converting the PMA to PNaA under the condition of base. The effects of different mass ratio of the two networks and different cross‐linking degree of the second network on the pore structure and adsorption capacity of PDVB/PNaA IPN resin were studied. The PDVB/PNaA IPN resin whose adsorption quantity is the biggest was chosen to study further. The pore structure, the weak acid exchange capacity, the water retention capacity, and the swelling ability of PDVB/PNaA IPN resin were measured. The study focused on the adsorption isotherms of berberine at different temperatures. Isosteric adsorption enthalpy, adsorption Gibbs free energies can be calculated according to thermodynamic functions. The results show that the saturated adsorption quantity of berberine is up to 109.4 mg ml?1 (wet resin) by the way of dynamic adsorption and desorption experiment. The resin could be reused by the mixture with 0.5% sodium chloride and 80% ethanol. On the one hand the hydrophobic PDVB in the PDVB/PNaA IPN resin has the ability of adsorption using π–π interaction, and on the other hand the hydrophilic PNaA in the PDVB/PNaA IPN resin has the ability of adsorption using ion exchange interaction. An important conclusion can be drawn that the PDVB/PNaA IPN resin has a promising application prospect in extracting and separating quaternary ammonium type alkaloids such as berberine. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
6.
Hui Wang Qinmin Pan Michael Hammond Garry L. Rempel 《Journal of polymer science. Part A, Polymer chemistry》2012,50(4):736-749
Poly(methyl methacrylate)–poly(acrylonitrile‐co‐butadiene) (PMMA–NBR) core–shell structured nanoparticles were prepared using a two‐stage semibatch microemulsion polymerization system with PMMA and NBR as the core and shell, respectively. The Gemini surfactant 12‐3‐12 was used as the emulsifier and found to impose a pronounced influence on the formation of core–shell nanoparticles. The spherical morphology of core–shell nanoparticles was observed. It was found that there exists an optimal MMA addition amount, which can result in the minimized size of PMMA–NBR core–shell nanoparticles. The formation mechanism of the core–shell structure and the interaction between the core and shell domains was illustrated. The PMMA–NBR nanosize latex can be used as the substrate for the following direct latex hydrogenation catalyzed by Wilkinson's catalyst to prepare the PMMA–HNBR (hydrogenated NBR) core–shell nanoparticles. The hydrogenation rate is rapid. In the absence of any organic solvent, the PMMA–HNBR nanoparticles with a size of 30.6 nm were obtained within 3 h using 0.9 wt % Wilkinson's catalyst at 130 °C under 1000 psi of H2. This study provides a new perspective in the chemical modification of NBR and shows promise in the realization of a “green” process for the commercial hydrogenation of unsaturated elastomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
7.
He Zhu Prof. Dr. Qi Zhang Prof. Dr. Shiping Zhu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(26):8751-8755
3D Hierarchical porous metal–organic framework (MOF) monoliths are prepared by using Pickering high internal phase emulsion (HIPE) template. Pickering HIPEs were stabilized solely by UiO‐66 MOF particles with internal phase up to 90 % of the volume. The effects of internal phase type and volume, as well as MOF particle concentration on the stability of resulting Pickering HIPEs were investigated. Furthermore, by adding small amount of polyvinyl alcohol (PVA) as binder or polymerization in the continuous aqueous phase, followed by freeze‐drying, two types of MOF‐based 3D hierarchical porous monoliths with ultralow density (as low as 12 mg cm?3) were successfully prepared. This Pickering HIPE template approach provides a facile and practical way for assembling of MOFs into complex structures. 相似文献
8.
The present work reported a novel hydrophilic and selective solid‐phase microextraction fiber by improved multiple co‐polymerization method immobilization of tetracycline molecularly imprinted polymer on a stainless steel wire and directly coupled with high‐performance liquid chromatography for sensitive determination of trace tetracyclines residues in animal derived foods. The developed molecularly imprinted polymer coated solid‐phase microextraction fibers were characterized through scanning electron microscopy, Fourier transfer infrared spectroscopy, thermogravimetric analysis, and adsorption experiments, the fiber with cross‐linked and porous structure was observed and high thermal and chemical stability. The maximum adsorption capacity of this fiber with good selectivity reached 2.35 µg/mg in aqueous matrices, and showed good repeatability (relative standard deviation ≤ 6.6%, n = 5) and satisfying reproducibility between fiber to fiber (relative standard deviation ≤ 7.8%, n = 5). Under the optimized solid‐phase microextraction conditions, satisfactory linearity (5–1000 µg/L) and detection limits (0.38–0.72 µg/kg, S/N = 3) for all the tetracyclines were obtained. The practicality of this method was proved by adding tetracycline, oxytetracycline at three levels to milk, chicken, and fish samples with good recoveries of 77.3–104.4%. 相似文献
9.
In this work, 5, 10, 15, 20‐Tetra‐(4‐aminophenyl) porphyrin (TAPP) was used as gelator to prepare metal‐porphyrin porous coordination polymer (PCP) via solvothermal process, Soxhlet extraction and supercritical CO2 extraction. Firstly, the metal‐porphyrin organic gel (MOG) was prepared as intermediate with solvothermal method. The generation of gels is associated with many factors. When four acetates [Co(Ac)2?4H2O, Zn(Ac)2?2H2O, Mn(Ac)2?4H2O and Ni(Ac)2?7H2O] reacted with TAPP, only the reaction between Co(Ac)2?4H2O and TAPP could form desired metal‐porphyrin organic gel. The influences of solvent, concentration and anions were investigated in the gelation process. Secondly, the residual reactants and solvent molecules in MOG were removed through Soxhlet extraction and supercritical CO2 extraction. The Co‐PCP is an amorphous material with a hierarchical porous structure can effectively catalyze the oxidation of ethylbenzene and also exhibits a strong adsorptive capacity for the strong‐polar solvent molecules. 相似文献
10.
Preparation of composite polyacrylate latex particles with in situ‐formed methylsilsesquioxane cores
Composite polyacrylate latex particles were prepared through a simple method by dissolving organosilicon monomer methyltrimethoxysilane in a monomer mixture of acrylic monomers methyl methacrylate (MMA), n‐butyl acrylate (n‐BA), and acrylic acid (AA). With the addition of water needed for hydrolysis, methyltrimethoxylsilane hydrolyzed under catalysis by AA and further condensed to form polymeric methylsilsesquioxane (MSQ). The monomer mixture containing in situ‐formed MSQ was then subjected to emulsification and emulsion polymerization. Transmission electron microscopy (TEM) images showed that the obtained latex particles had a core–shell structure. Differences between the X‐ray photoelectron spectroscopy (XPS) results of the contents of silicon atoms on surfaces of films formed at temperatures above and below glass transition temperatures (Tgs) of polyacrylate evidenced that the cores were made up of MSQ and the shells were made up of polyacrylate. The static water contact angle measurements indicated that the incorporation of MSQ can result in composite latex with higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
A study on the correlation between electrical percolation and viscoelastic percolation for carbon black (CB) and carbon fiber (CF) filled high‐density polyethylene (HDPE) conductive composites was carried out through an examination of the filler concentration (?) dependence of the volume resistivity (ρ) and dynamic viscoelastic functions. For CB/HDPE composites, when ? was higher than the modulus percolation threshold (?G ~ 15 vol %), the dynamic storage modulus (G′) reached a plateau at low frequencies. The relationship between ρ and the normalized dynamic storage modulus (Gc′/Gp′, where Gc′ and Gp′ are the dynamic storage moduli of the composites and the polymer matrix, respectively) was studied. When ? approached a critical value (?r), a characteristic change in Gc′/Gp′ appeared. The critical value (Gc′/G′p)c was 9.80, and the corresponding ?r value was 10 vol %. There also existed a ? dependence of the dynamic loss tangent (tan δ) and a peak in a plot of tan δ versus the frequency when ? approached a loss‐angle percolation (?δ = 9 vol %). With parameter K substituted for A, a modified Kerner–Nielson equation was obtained and used to analyze the formation of the network structure. The viscoelastic percolation for CB/HDPE composites could be verified on the basis of the modified equation, whereas no similar percolation was found for CF/HDPE composites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1199–1205, 2004 相似文献
12.
Monolithic porous copolymers with 3D structure were prepared via CO2‐in‐water high internal phase emulsions template by graft copolymerization of sodium methacrylate (MAANa) on to methyl cellulose (MC) backbone. The yielded copolymer monoliths are characterized by Fourier transform infrared spectra, scanning electron microscopy (SEM), and mechanical instrument, the swelling degree of MC‐g‐PMAANa monoliths with different crosslinker in diverse pH were investigated. The adsorption performance of monolith to Cu(II) were conducted to explore its adsorption capacity to heavy metal ions from the wastewater. Then, a strategy of in situ growth of metal‐organic frameworks (MOFs) on MC‐g‐PMAANa that adsorbed with metal ions was proposed first. The X‐ray powder diffraction, SEM, and Brunauer‐Emmett‐Teller (BET) surface area result of MC‐g‐PMAANa/MOFs composites indicated that the MOFs nanoparticles were grown uniformly on the monolith wall without destroying its original 3D porous structure. Compared with MOFs nanoparticle, MC‐g‐PMAANa/MOFs composites have advantages of easy operation and handle, which more conform to practical application. Furthermore, the antibacterial activity of MC‐g‐PMAANa/MOFs was evaluated by disk agar diffusion and optical density methods. In addition, MC‐g‐PMAANa/Cu‐BTC composite was applied to dye adsorption, which has proved the underlying application of such composites in dye removal. 相似文献
13.
Hung‐Ju Yen Shiue‐Ming Guo Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2010,48(23):5271-5281
Two series of new organosoluble polyamides with methyl‐substituted triphenylamine (MeTPA) units showing anodically electrochromic characteristic were prepared from the phosphorylation polyamidation reaction of two diamine monomers, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 2 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ′), with various dicarboxylic acids, respectively. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with relatively high glass‐transition temperatures (Tg) (314–329 °C) and high char yields (higher than 62% at 800 °C in nitrogen). In addition, the polymer films showed reversible electrochemical oxidation, high coloration efficiency (CE), low switching time, and anodic green electrochromic behavior. The unexpected electrochemical behavior of higher oxidation potential and lower electrochemical stability of Me3TPA‐polyamides I than MeTPA corresponding polymers could be attributed to the higher steric hindrance of ortho‐substituents in Me3TPA moieties, thus made the resonance stabilization of cation radical much more difficult for the Me3‐substituted phenyl ring. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
14.
Haiyong Zhang Yun Zhu Jianding Chen Shengmiao Zhang 《Journal of polymer science. Part A, Polymer chemistry》2017,55(13):2129-2135
A hydrophilic emulsion‐templated porous polymer (polyHIPE) is synthesized by CuAAC “click” chemistry. Herein, a 4,4′‐diazidostilbene‐2,2′‐disulfonic acid disodium salt‐4H2O (DAS) and tripropargylamine in the mixture of water and N,N‐dimethylformamide solution is used as external phase of the high internal phase emulsion template, and paraffin liquid is involved as the internal phase. The resulting polyHIPE has a well‐defined interconnected pore structure, which could be tailored by changing preparation parameters, such as reagent content, internal phase volume fraction, and surfactant concentration. Thermal analysis shows that the polyHIPE is stable under 180 °C. Owing to the presence of a large number of sodium sulfonate groups from the reagent DAS and the triazoles groups produced in the reaction, the polyHIPE is proved to be a highly efficient adsorbent of heavy metal ion (i.e., up to 52 mg/g for Cu(II) ions) in water. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2129–2135 相似文献
15.
Kazuki Osawa Toyoko Imae Masaki Ujihara Atsushi Harada Kanako Ochi Kazuhiko Ishihara Shin‐ichi Yusa 《Journal of polymer science. Part A, Polymer chemistry》2013,51(22):4923-4931
Generation 3.5 poly(amido amine) dendron (G3.5) with 16 n‐butyl terminal groups containing an acrylamide monomer (AaUG3.5) was prepared by condensation between an amino focal group in G3.5 and 11‐acrylamidoundecanoic acid. AaUG3.5 was polymerized using poly(2‐methacryloyloxyethyl phosphorylcholine) (pMPC)‐based macro‐chain transfer agent via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to obtain amphiphilic diblock copolymers with different compositions. The diblock copolymers (PmDn) were composed of a hydrophilic pMPC block and hydrophobic pendant dendron‐bearing block, where P and D represent pMPC and pAaUG3.5, respectively, and m and n represent the degree of polymerization for each block, respectively. P296D1 and P98D3 formed vesicles and large compound micelles and vesicles, respectively, which was confirmed by light scattering measurements and transmission electron microscopic (TEM) observations. The large compound micelles formed from P98D3 could not incorporate hydrophilic guest polymer molecules, because the aggregates did not have a hydrophilic hollow core. In contrast, the vesicles formed from P269D1 could incorporate hydrophilic guest polymer molecules into the hollow core. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4923–4931 相似文献
16.
Preparation and evaluation of monodispersed,submicron, non‐porous silica particles functionalized with β‐CD derivatives for chiral‐pressurized capillary electrochromatography 下载免费PDF全文
Submicron, non‐porous, chiral silica stationary phase has been prepared by the immobilization of functionalized β‐CD derivatives to isocyanate‐modified silica via chemical reaction and applied to the pressurized capillary electrochromatography (pCEC) enantio‐separation of various chiral compounds. The submicron, non‐porous, cyclodextrin‐based chiral stationary phases (sub_μm‐CSP2) exhibited excellent chiral recognition of a wide range of analytes including clenbuterol hydrochloride, mexiletine hydrochloride, chlorpheniramine maleate, esmolol hydrochloride, and metoprolol tartrate. The synthesized submicron particles were regularly spherical and uniformly non‐porous with an average diameter of around 800 nm and a mean pore size of less than 2 nm. The synthesized chiral stationary phase was packed into 10 cm × 100 μm id capillary columns. The sub_μm‐CSP2 column used in the pCEC system showed better separation of the racemates and at a higher rate compared to those used in the capillary liquid chromatography mode (cLC) system. The sub_μm‐CSP2 possessed high mechanical strength, high stereoselectivity, and long lifespan, demonstrating rapid enantio‐separation and good resolution of samples. The column provided an efficiency of up to 170 000 plates/m for n‐propylbenzene. 相似文献
17.
Moon Suk Kim Hoon Hyun Kwang Su Seo Young Ho Cho Jung Won Lee Chang Rae Lee Gilson Khang Hai Bang Lee 《Journal of polymer science. Part A, Polymer chemistry》2006,44(18):5413-5423
MPEG–PCL diblock copolymers consisting of methoxy polyethylene glycol (MPEG, 750 g/mol) and poly(?‐caprolactone) (PCL) were synthesized by ring‐opening polymerization. Aqueous solutions of the synthesized diblock copolymers were prepared by dissolving the MPEG–PCL diblock copolymers at concentrations in the range of 0–20 wt %. When the PCL molecular weight was 3000 or greater, the polymer was only partially soluble in water. As the temperature was increased from room temperature, the diblock copolymer solutions showed two phase transitions: a sol‐to‐gel transition and a gel‐to‐sol transition. The sol‐to‐gel phase transition temperature decreased substantially with increasing PCL length. The sol–gel–sol transition with the increase in temperature was confirmed by monitoring the viscosity as a function of temperature. The temperature ranges of the phase transitions measured by the tilting method were in full agreement with those determined from the viscosity measurements. The maximum viscosity of the copolymer solution increased with increasing hydrophobicity of the diblock copolymer and with increasing copolymer concentration. X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the diblock copolymers exhibited crystalline domains that favored the formation of an aggregated gel because of the tight aggregation and strong packing interactions between PCL blocks. Scanning electron micrographs of the diblock copolymer solutions in the sol state showed interconnected polyhedral pore structures, whereas those of the gel state revealed a fibrillar‐like morphology. Atomic force microscope (AFM) studies of the sol and gel surfaces showed that the sol surface was covered with fine globular particles, whereas the gel surface was covered with particles in micron‐scale irregular islets. These findings are consistent with uniform mixing of the diblock copolymer and water in the sol state, and aggregation of PCL blocks in the gel state. In conclusion, we confirm that the MPEG–PCL diblock copolymer solution exhibited a sol–gel–sol transition as a function of temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5413–5423, 2006 相似文献
18.
Boris L. Tsetlin Vladimir N. Golubev Alexandr V. Vlasov Alexei R. Khokhlov Anatoly V. Vannikov Alek R. Tameev 《Macromolecular rapid communications》2004,25(5):628-631
Summary: In this work the first samples of polymeric semiconductors of a new structure are produced. Their electric conductivity is of the order ∼10−2 Ohm−1 · cm−1 and it increases with temperature. Their synthesis includes a stage of radiation grafting of a matrix‐type on stretched polyamide films. Conducting molecular circuits in such materials include fragments with conjugated bonds and metal clusters. The alternation of these fragments is determined by the polyamide matrix.
19.
Simona Felletti Chiara De Luca Giulio Lievore Luisa Pasti Tatiana Chenet Giulia Mazzoccanti Francesco Gasparrini Alberto Cavazzini Martina Catani 《Journal of separation science》2020,43(9-10):1737-1745
Three columns packed with 2.0 μm superficially porous particles, 1.7 μm fully porous particles, and monodisperse 1.9 μm fully porous particles with narrow particle size distribution have been deeply characterized from a kinetic point of view. The 1.9 μm column showed excellent kinetic performance, comparable to that of the superficially porous one. These two columns also exhibit flatter c‐branches of the van Deemter curve compared to the 1.7 μm fully porous particles column, resulting in smaller loss of efficiency when they are operated at higher flow rates than the optimal ones. The independent evaluation of each contribution to band broadening has revealed that the difference in kinetic performance comes from the very small eddy dispersion contribution on the 1.9 μm column, surprisingly even lower than that of the superficially porous one. This finding suggests a very good packing of the monodisperse 1.9 μm column. On the other hand, the potential of 1.7 μm fully porous particles is completely broken down by the strong frictional heating effect already arising at relatively low flow rates. 相似文献
20.
Yongqing Wen Xuemei Yuan Feng Qin Longshan Zhao Zhili Xiong 《Biomedical chromatography : BMC》2019,33(1)
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high‐throughput hydrophilic interaction UHPLC–MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one‐step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra‐day and inter‐day precisions were within 15.0% and the accuracy ranged from ?12.8 to 12.7%. The hydrophilic interaction UHPLC–MS/MS method was rapid, accurate and high‐throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix. 相似文献