共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactic acid)/organo-montmorillonite nanocomposites were prepared by melt intercalation technique. Maleic anhydride-grafted
ethylene propylene rubber (EPMgMA) was added into the PLA/OMMT in order to improve the compatibility and toughness of the
nanocomposites. The samples were prepared by single screw extrusion followed by compression molding. The effect of OMMT and
EPMgMA on the thermal properties of PLA was studied. The thermal properties of the PLA/OMMT nanocomposites have been investigated
by using differential scanning calorimeter (DSC) and thermo-gravimetry analyzer (TG). The melting temperature (T
m), glass transition temperature (T
g), crystallization temperature (T
c), degree of crystallinity (χc), and thermal stability of the PLA/OMMT nanocomposites have been studied. It was found that the thermal properties of PLA
were greatly influenced by the addition of OMMT and EPMgMA. 相似文献
2.
The thermomechanical properties, morphology, and gas permeability of hybrids prepared with three types of organoclays were compared in detail. Hexadecylamine–montmorillonite (C16–MMT), dodecyltrimethyl ammonium bromide–montmorillonite (DTA‐MMT), and Cloisite 25A were used as organoclays in the preparation of nanocomposites. From morphological studies using transmission electron microscopy, most clay layers were found to be dispersed homogeneously in the matrix polymer, although some clusters or agglomerated particles were also detected. The initial degradation temperature (at a 2% weight loss) of the poly(lactic acid) (PLA) hybrid films with C16–MMT and Cloisite 25A decreased linearly with an increasing amount of organoclay. For hybrid films, the tensile properties initially increased but then decreased with the introduction of more of the inorganic phase. The O2 permeability values for all the hybrids for clay loadings up to 10 wt % were less than half the corresponding values for pure PLA, regardless of the organoclay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 94–103, 2003 相似文献
3.
首先,采用乳酸为引发剂,辛酸亚锡为催化剂,引发丙交酯开环聚合制得具有缩聚活性的L-聚乳酸和D-聚乳酸;然后,将两者熔融共混后进行固相缩聚,合成了一系列立体嵌段聚乳酸。采用核磁共振(NMR)、凝胶渗透色谱(GPC)及差示扫描量热仪(DSC)分析了产物的链结构、重均分子量、热性能,并探讨了均相晶体和立体复合晶体共存情况下的固相缩聚机理。结果表明,固相缩聚产物分子量增长的适宜反应条件为:反应时间30h,较低的催化剂含量,L-聚乳酸质量分数为80%。L-聚乳酸和D-聚乳酸共混物较低的初始立体复合晶体结晶度有利于后续固相缩聚过程中产物分子量的增长;固相缩聚不仅发生在异链之间,而且也发生在同链之间。 相似文献
4.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
Yeong‐Tarng Shieh Yawo‐Kuo Twu Chean‐Cheng Su Rong‐Hsien Lin Gin‐Lung Liu 《Journal of Polymer Science.Polymer Physics》2010,48(9):983-989
Effects of carbon nanotubes (CNT) on the isothermal crystallization kinetics of poly(L ‐lactic acid) (PLLA) were quantitatively investigated using the Avrami equation and the secondary nucleation theory of Lauritzen and Hoffman. CNT via grafting modification with PLLA could well disperse in the PLLA matrix and give significantly enhanced crystallization rate and crystallinity of PLLA as analyzed by differential scanning calorimetry and polarized optical microscopy. Analysis of isothermal crystallization kinetics using the Avrami equation demonstrated that CNT significantly enhanced the bulk crystallization of PLLA. Analysis of spherulite growth kinetics using the secondary nucleation theory of Lauritzen and Hoffman found that CNT could expand the temperature range of the crystallization regime III of PLLA. Values of the nucleation constant (Kg) in crystallization regimes III and II of PLLA both increased with increasing CNT contents. The Kg III/Kg II ratios were found to be close to the theoretical value 2 but were not clearly found to depend on the CNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 983–989, 2010 相似文献
6.
Alginate, chitosan and gelatin were deposited on the surface of PDL‐LA films via an entrapment method. ATR‐FT‐IR, XPS and contact‐angle analyses revealed the formation of stable thin biomacromolecule layers on the PDL‐LA film, thus enhancing the hydrophilicity of the films. Confocal laser scanning microscopy showed the existence of entrapment areas of approximately 10–20 μm in depth. This simple surface‐treatment method may have the potential for many biomedical applications. 相似文献
7.
The objective of this article is to fabricate poly(lactic acid) (PLA) and nano silica (SiO2) composites and investigate effect of SiO2 on the properties of PLA composites. Surface‐grafting modification was used in this study by grafting 3‐Glycidoxypropyltrimethoxysilane (KH‐560) onto the surface of silica nanoparticles. The surface‐grafting reaction was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then the hydrophilic silica nanoparticles became hydrophobic and dispersed homogeneously in PLA matrix. Scanning electron microscope and Dynamic thermomechanical analysis (DMA) results revealed that the compatibility between PLA and SiO2 was improved. Differential scanning calorimetry and polarized optical microscope tests showed that nano‐silica had a good effect on crystallization of PLA. The transparency analysis showed an increase in transparency of PLA, which had great benefit for the application of PLA. The thermal stability, fire resistance, and mechanical properties were also enhanced because of the addition of nano silica particles. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
以来源于可再生资源聚丁二酸丁二醇酯(PBS)和氯醚橡胶(ECO)作为聚乳酸(PLA)的增韧改性剂,通过熔融共混的方法制备了PLA/PBS/ECO三元共混体系。动态力学分析和扫描电子显微镜结果表明,ECO促进了PBS和PLA之间的相容性。力学性能测试表明,ECO与PBS可实现对聚乳酸基体的协同增韧: PLA/PBS/ECO(70/20/10)显示出最优的拉伸性能,断裂伸长率高达270%;PLA/PBS/ECO(70/10/20)的冲击强度提高至23.7 kJ/m2,是纯聚乳酸的12倍。结合形态结构和冲击断面形貌分析表明ECO的存在可起到增容/增韧双重作用, 与柔性PBS产生良好的协同效应,有效改善聚乳酸材料的韧性。我们的研究表明,构造PLA-柔性生物聚酯和生物基弹性体多元共混体系是一种获得高性能生物基材料简单高效的手段。 相似文献
9.
Yingwei Di Salvatore Iannace Ernesto Di Maio Luigi Nicolais 《Journal of Polymer Science.Polymer Physics》2005,43(6):689-698
In this study, polymer nanocomposites based on poly(lactic acid) (PLA) and organically modified layered silicates (organoclay) were prepared by melt mixing in an internal mixer. The exfoliation of organoclay could be attributed to the interaction between the organoclay and PLA molecules and shearing force during mixing. The exfoliated organoclay layers acted as nucleating agents at low content and as the organoclay content increased they became physical hindrance to the chain mobility of PLA. The thermal dynamic mechanical moduli of nanocomposites were also improved by the exfoliation of organoclay; however, the improvement was reduced at high organoclay content. The dynamic rheological studies show that the nanocomposites have higher viscosity and more pronounced elastic properties than pure PLA. Both storage and loss moduli increased with silicate loading at all frequencies and showed nonterminal behavior at low frequencies. The nanocomposites and PLA were then foamed by using the mixture of CO2 and N2 as blowing agent in a batch foaming process. Compared with PLA foam, the nanocomposite foams exhibited reduced cell size and increased cell density at very low organoclay content. With the increase of organoclay content, the cell size was decreased and both cell density and foam density were increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 689–698, 2005 相似文献
10.
Xiaolang Chen Jeffrey Kalish Shaw Ling Hsu 《Journal of Polymer Science.Polymer Physics》2011,49(20):1446-1454
Poly(lactic acid) films consisting of α′‐forms were prepared and uniaxially drawn. The effects of the draw rate at temperatures above the glass transition temperature on chain conformation, degree of crystallinity, and crystalline phase transformation were investigated by a combination of vibrational spectroscopy (infrared and Raman), differential scanning calorimetry, and wide‐angle X‐ray diffraction (WAXD). It was established that the α′‐crystal's phase of poly(lactic acid) films does not transform into either an α or β crystals on uniaxial drawing at a fixed draw ratio of 4. However, the degree of crystallinity was significantly increased on deformation. The structural change as a function of deformation also promotes an increase in the strain‐induced enthalpic relaxation endothermic peak appearing near the glass transition region. While the overall changes in physical properties can be attributed to the changes in the degree of crystallinity as a function of strain rate, polarized Raman spectra, and WAXD clearly illustrated changes and the differences in the amorphous and crystalline orientation as a function of processing conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1446–1454, 2011 相似文献
11.
The ring-opening polymerization of L -lactide (LA) has been initiated by aluminum triflate (trifluoromethanesulfonate) in air using a simple glass tube at 100 °C without desiccation steps and stirring. It was found that the molecular weight of poly(lactic acid) (PLA) was increased by the addition of an alcohol as an initiator to the reaction mixture. The highest number averaged molecular weight, molecular weight distribution, and recovery of the obtained PLA at 100 °C for 6 h were 18,200, 1.20, and 73%, respectively. With the addition of a small percentage of alcohol and a long reaction time of the polymerization method with the re-addition of LA, PLA (ca. 80 wt%) with a higher molecular weight (ca. 30,000) initiated by the added alcohol was produced with PLA (ca. 20 wt%) with a lower molecular weight (ca. 2,000) initiated by impurities such as water, which exist in a monomer, initiator, or catalyst. 相似文献
12.
13.
A novel nucleating agent, amidated potassium hydrogen phthalate intercalated layered double hydroxides (AP‐LDHs) were prepared using an amidation reaction. Through the structural characterization, it was found that AP‐LDHs had been successfully prepared. Meanwhile, the antibacterial activity of AP‐LDHs was studied. In order to improve the performance of poly (lactic acid) (PLA), PLA/AP‐LDHs nanocomposites were prepared by melt blending. Morphological analysis showed that PLA nanocomposites had an exfoliated structure. Mechanical properties test showed that the mechanical properties of PLA nanocomposites were enhanced. And the fracture scanning electron microscope analysis indicated that the PLA/AP‐LDHs nanocomposites exhibited ductile fracture characteristics. Moreover, differential scanning calorimetry and polarized optical microscopy analysis results demonstrated that the crystallization rate, nucleation density, and crystallinity of PLA/AP‐LDHs were improved. Thermogravimetric analysis and thermal degradation kinetics showed that the thermal stability of the PLA nanocomposites was significantly improved. 相似文献
14.
Summary: The fracture strain for the composite of poly(L ‐lactic acid) (PLLA) and double‐fullerene end‐capped poly(ethylene oxide) (FPEOF) was observed about 100 times of PLLA with a high modulus for room‐temperature aged samples. The aggregates of fullerene of FPEOF ends give rise to the formation of physical network of poly(ethylene oxide), which forms a pseudo‐semi‐interpenetrating network with PLLA and renders the astonishing enforcing effect on the PLLA.
15.
Chang‐Ming Dong Kun‐Yuan Qiu Zhong‐Wei Gu Xin‐De Feng 《Journal of polymer science. Part A, Polymer chemistry》2002,40(3):409-415
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002 相似文献
16.
Sung Il Moon Chan Woo Lee Masatoshi Miyamoto Yoshiharu Kimura 《Journal of polymer science. Part A, Polymer chemistry》2000,38(9):1673-1679
Poly(L ‐lactic acid) (PLLA) was produced by the melt polycondensation of L ‐lactic acid. For the optimization of the reaction conditions, various catalyst systems were examined at different temperature and reaction times. It was discovered that Sn(II) catalysts activated by various proton acids can produce high molecular weight PLLA [weight‐average molecular weight (Mw ) ≥ 100,000] in a relatively short reaction time (≤15 h) compared with simple Sn(II)‐based catalysts (SnO, SnCl2 · 2H2O), which produce PLLA with an Mw of less than 30,000 after 20 h. The new catalyst system is also superior to the conventional systems in regard to racemization and discoloration of the resultant polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1673–1679, 2000 相似文献
17.
18.
Preparation and characterization of benzoyl‐hydrazide‐derivatized poly(lactic acid) and γ‐cyclodextrin inclusion complex and its effect on the performance of poly(lactic acid) 下载免费PDF全文
A nucleating agent, benzyl‐hydrazide‐derivatized poly(lactic acid) (PLA) and γ‐cyclodextrin inclusion complex (PLA‐IC‐BH), was synthesized through a series of reactions. Poly(lactic acid) and γ‐cyclodextrin inclusion complex (PLA‐IC) was first obtained by ultrasonic co‐precipitation, which was then subjected to carboxylation, acylation, and amidation using benzoyl hydrazine and thionyl chloride. The composition and structure of PLA‐IC‐BH was confirmed by 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. PLA/PLA‐IC‐BH composites were prepared by melt blending and a hot‐press forming process. Mechanical properties, thermal stabilities, and crystallization behaviors of PLA/PLA‐IC‐BH samples were investigated by thermogravimetric analysis, differential scanning calorimetry (DSC), polarized optical microscopy (POM), rheological analysis, and so on. Mechanical testing and thermogravimetric analysis showed that the tensile strengths, impact properties, and thermal stabilities of PLA/PLA‐IC‐BH composites were improved significantly compared to pure PLA and PLA/PLA‐IC. DSC results showed that crystallinity of PLA was increased from 5.17% to 38.93% after introduction of PLA‐IC‐BH. POM results showed that PLA‐IC‐BH acted as a nucleating agent for PLA and enhanced its crystallization rate. Rotational rheological behaviors of PLA/PLA‐IC‐BH demonstrated that incorporation of PLA‐IC‐BH increased the rigidity of the network structure of the PLA matrix. Compared to those of PLA, the maximum torque and apparent viscosity of PLA/PLA‐IC‐BH composites were increased by 55.56% and 25.59%, respectively. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
19.
Dina A.S. Marques Susana Jarmelo Cristina M.S. G. Baptista M.H. Gil 《Macromolecular Symposia》2010,296(1):63-71
The step-growth polymerization of L-lactic acid in solution was studied in this work. In order to attain a polymer with high molecular weight, the water formed during the polymerization must be continuously removed. The use of organic solvents with high boiling point, drying agents and reduced pressure led to poly(lactic acid) (PLA) with high molecular weight, directly from the monomer. Tin (II) chloride dihydrate, SnCl2.2H2O, was the best of the catalysts tested as it allowed achieving PLA with a molecular weight close to 80 000 g.mol−1. However, the stereoregurarity control is a severe problem in PLA synthesis by step-growth due to transesterification reactions, which lead to an inversion of the conformation and a decrease of the optical purity of the polymer. Specific rotation measurements were used in this work and showed to be a powerful technique to evaluate the racemization extent. The thermal stability of the PLA samples was evaluated by DSC which exhibits a thermal behaviour similar to the commercial Polylactide. 相似文献