首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.  相似文献   

2.
由于能源危机与环境问题,全球能源的消耗正逐渐从传统化石能源转向其它清洁高效能源。高效清洁能源的存储是电动汽车和智能电网的关键技术,对新能源、新材料和新能源汽车国家战略新兴产业的发展具有重要意义。锂离子电池是目前广泛应用的一种能源存储器件。电动汽车和智能电网对能量密度、功率密度、循环寿命和成本等方面的要求越来越高,传统的锂离子电池面临巨大挑战,发展下一代能源存储技术迫在眉睫。高能量密度的锂硫电池和锂空气电池,低成本、高安全性的室温钠离子电池受到了越来越多的关注。本文简要总结了近年来锂硫电池、锂空气电池和钠离子电池及其关键电极材料的研究进展,并对这些新型能源存储技术存在的问题和未来的前景做出了分析和展望。  相似文献   

3.
Ambient‐temperature sodium–sulfur (Na–S) batteries are considered a promising energy storage system due to their high theoretical energy density and low costs. However, great challenges remain in achieving a high rechargeable capacity and long cycle life. Herein we report a stable quasi‐solid‐state Na‐S battery enabled by a poly(S‐pentaerythritol tetraacrylate (PETEA))‐based cathode and a (PETEA‐tris[2‐(acryloyloxy)ethyl] isocyanurate (THEICTA))‐based gel polymer electrolyte. The polymeric sulfur electrode strongly anchors sulfur through chemical binding and inhibits the shuttle effect. Meanwhile, the in situ formed polymer electrolyte with high ionic conductivity and enhanced safety successfully stabilizes the Na anode/electrolyte interface, and simultaneously immobilizes soluble Na polysulfides. The as‐developed quasi‐solid‐state Na‐S cells exhibit a high reversible capacity of 877 mA h g?1 at 0.1 C and an extended cycling stability.  相似文献   

4.
锂/氟化碳电池作为固态正极中理论比能量较高(2203 Wh/kg)的一种一次电池体系,受到极大的关注,在诸多领域已有应用。本文对高功率锂/氟化碳电池的优化设计的最新研究进展进行了综述,详细讨论了氟化碳材料的前驱体、氟化方法、氟化碳材料表面改性、电极结构设计等因素对电池倍率性能的影响,并对今后功率型锂/氟化碳一次电池的发展方向进行了展望。  相似文献   

5.
Dependence on lithium‐ion batteries for automobile applications is rapidly increasing, and further improvement, especially for positive electrode materials, is indispensable to increase energy density of lithium‐ion batteries. In the past several years, many new lithium‐excess high‐capacity electrode materials with rocksalt‐related structures have been reported. These materials deliver high reversible capacity with cationic/anionic redox and percolative lithium migration in the oxide/oxyfluoride framework structures, and recent research progresses on these electrode materials are reviewed. Material design strategies for these lithium‐excess electrode materials are also described. Future possibility of high‐energy non‐aqueous batteries with advanced positive electrode materials is discussed for more details.  相似文献   

6.
High energy‐density lithium‐ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni‐rich, lithium transition‐metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2. However, for these Ni‐rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni‐rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.  相似文献   

7.
Rechargeable batteries are considered one of the most effective energy storage technologies to bridge the production and consumption of renewable energy. The further development of rechargeable batteries with characteristics such as high energy density, low cost, safety, and a long cycle life is required to meet the ever‐increasing energy‐storage demands. This Review highlights the progress achieved with halide‐based materials in rechargeable batteries, including the use of halide electrodes, bulk and/or surface halogen‐doping of electrodes, electrolyte design, and additives that enable fast ion shuttling and stable electrode/electrolyte interfaces, as well as realization of new battery chemistry. Battery chemistry based on monovalent cation, multivalent cation, anion, and dual‐ion transfer is covered. This Review aims to promote the understanding of halide‐based materials to stimulate further research and development in the area of high‐performance rechargeable batteries. It also offers a perspective on the exploration of new materials and systems for electrochemical energy storage.  相似文献   

8.
王福慧  刘辉彪 《无机化学学报》2019,35(11):1999-2012
锌离子二次电池具有优异的充放电性能、高功率密度和能量密度、低成本、高安全性和环境友好的特点,极具发展前景。金属锌,因优异的导电性、低的平衡电势、高的理论比容量和低成本等因素,是水系二次电池中理想的负极材料,然而也存在着枝晶生长、腐蚀和钝化等问题,限制了锌离子二次电池的可逆容量和循环寿命,通过优化调节锌负极的形貌与表面修饰等方法可以提高电池性能。本文综述了水系锌离子二次电池负极材料的研究进展,涵盖了金属锌负极、复合锌负极和锌合金,且展望了锌负极的发展前景。  相似文献   

9.
超级电容器最大的优点是具有优良的脉冲充放电性能和快速充放电性能,同时具有循环寿命长、工作温度范围宽、安全无污染等特性,但能量密度较低. 本文对超级电容器的工作原理、发展状况、缺陷所在和改进方法进行了简要介绍,以本课题组在高比能超级电容器方面的研究工作为主线,结合近几年的文献报道,重点阐述了超级电容器能量密度的提升策略. 主要围绕以下三个方面开展了工作:1)通过将电极材料尺寸纳米化来提高传统电极材料的比容量或开发其他高比容量的电极材料;2)发展具有高电压窗口的离子液体电解液,或利用不同材料在不同电位区间的电容特性构筑不对称电容器,从而提高超级电容器的电压窗口;3)将超级电容器和锂离子电池进行“内部交叉”构筑兼具高能量密度和高功率密度的锂离子混合电容器. 最后,对超级电容器的发展进行了展望.  相似文献   

10.
The novel functionalized porphyrin [5,15‐bis(ethynyl)‐10,20‐diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy‐storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy‐storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge–discharge rates up to 53 C and a specific energy density of 345 Wh kg−1 at a specific power density of 29 kW kg−1. Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg−1. Whereas the capacity is in the range of that of ordinary lithium‐ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability.  相似文献   

11.
超级电容器是一类利用电化学双电层或电极材料在电极/溶液界面发生的氧化还原反应来存储能量的装置,除兼有常规电容器功率密度大和二次电池能量密度高的特点外,还具有可逆性好和循环寿命长等优点.本文重点介绍了近几年国内外对中孔炭材料、表面官能团修饰中孔炭材料、中孔炭-金属氧化物、中孔炭-导电聚合物等几类电极材料的研究现状;并且展望了超级电容器用中孔炭及其复合电极材料的当前研究热点和发展前景.  相似文献   

12.
Carbon‐based electrochemical double‐layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudo‐capacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6‐tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudo‐capacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg?1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs.  相似文献   

13.
超级电容器具有功率密度大、循环寿命长等优点,但同时面临着能量密度低等缺点. 胶体离子超级电容器是最近开发的一种新型赝电容器,同时具有高功率密度和高能量密度的特点. 胶体离子超级电容器能够充分利用多价态金属阳离子的多电子氧化还原反应,完全释放储存的潜在电能,从而提高超级电容器的能量密度. 由于胶体离子的存在,缩短了电子、离子的扩散长度,加快了氧化还原反应动力学,从而保持高的功率密度. 本文主要介绍胶体离子超级电容器的发展过程、最新研究进展以及需要进一步开展的研究工作,作者希望从一个新的角度去研究发展下一代高性能电化学储能设备,实现新的突破.  相似文献   

14.
Well-defined Li(4)Ti(5)O(12) nanosheets terminated with rutile-TiO(2) at the edges were synthesized by a facile solution-based method and revealed directly at atomic resolution by an advanced spherical aberration imaging technique. The rutile-TiO(2) terminated Li(4)Ti(5)O(12) nanosheets show much improved rate capability and specific capacity compared with pure Li(4)Ti(5)O(12) nanosheets when used as anode materials for lithium ion batteries. The results here give clear evidence of the utility of rutile-TiO(2) as a carbon-free coating layer to improve the kinetics of Li(4)Ti(5)O(12) toward fast lithium insertion/extraction. The carbon-free nanocoating of rutile-TiO(2) is highly effective in improving the electrochemical properties of Li(4)Ti(5)O(12), promising advanced batteries with high volumetric energy density, high surface stability, and long cycle life compared with the commonly used carbon nanocoating in electrode materials.  相似文献   

15.
Recent developments in the use of polymeric materials as device components in lithium sulfur (Li‐S) batteries are reviewed. Li‐S batteries have generated tremendous interest as a next generation battery exhibiting charge capacities and energy densities that greatly exceed Li‐ion battery technologies. In this Highlight, the first comprehensive review focusing on the use of polymeric materials throughout these devices is provided. The key role polymers play in Li‐S technology is presented and organized in terms of the basic components that comprise a Li‐S battery: the cathode, separator, electrolyte, and anode. After a straightforward introduction to the construction of a conventional Li‐S device and the mechanisms at work during cell operation, the use of polymers as binders, protective coatings, separators, electrolytes, and electroactive materials in Li‐S batteries will be reviewed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1635–1668  相似文献   

16.
Of the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h?1 g?1(sulfur) at a rate of 10 C.  相似文献   

17.
伴随着电化学储能器件在便携式电子产品、混合动力电动汽车及大型工业规模的电力和能源管理中的应用,设计合成出结构新颖、性能优越的先进纳米电极材料显得至关重要.作为电化学储能器件中的重要一员,超级电容器以其功率密度高、循环寿命长等特点越来越受到人们的广泛关注,而电极材料的组成及结构是其性能高低的决定性因素.本文结合本科研团队近几年来的研究工作,综述了有关超级电容器纳米电极材料的设计与可控合成及其前沿研究进展.  相似文献   

18.
With the increasing demand for efficient and economic energy storage, Li‐S batteries have become attractive candidates for the next‐generation high‐energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li‐S batteries, this Review introduces the electrochemistry of Li‐S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li‐S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li‐S batteries with a metallic Li‐free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li‐S batteries serves as a prospective strategy for the industry in the future.  相似文献   

19.
Increasing demand for sodium‐ion batteries (SIBs), one of the most feasible alternatives to lithium ion batteries (LIBs), has resulted because of their high energy density, low cost, and excellent cycling stability. Consequently, the design and fabrication of suitable electrode materials that govern the overall performance of SIBs are important. Aerosol‐assisted spray processes have gained recent prominence as feasible, scalable, and cost‐effective methods for preparing electrode materials. Herein, recent advances in aerosol‐assisted spray processes for the fabrication of nanostructured metal chalcogenides (e.g., metal sulfides, selenides, and tellurides) for SIBs, with a focus on improving the electrochemical performance of metal chalcogenides, are summarized. Finally, the improvements, limitations, and direction of future research into aerosol‐assisted spray processes for the fabrication of various electrode materials are presented.  相似文献   

20.
The key issue holding back the application of solid polymeric electrolytes in high‐energy density lithium metal batteries is the contradictory requirements of high ion conductivity and mechanical stability. In this work, self‐healable solid polymeric electrolytes (SHSPEs) with rigid‐flexible backbones and high ion conductivity are synthesized by a facile condensation polymerization approach. The all‐solid Li metal full batteries based on the SHSPEs possess freely bending flexibility and stable cycling performance as a result of the more disciplined metal Li plating/stripping, which have great implications as long‐lifespan energy sources compatible with other wearable devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号