首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamide 6 nanocomposites reinforced with Cu/Si nanoparticles (PA6-Cu/Si) were prepared by the in-situ ring-opening polymerization of ?-caprolactam. The in-situ polymerization was critical for preventing the aggregation of Cu/Si nanoparticles. The Cu/Si nanoparticles in the nanocomposite retained their nano characteristics and were not oxidized by the amino groups in PA6. The structure of the as-fabricated PA6-Cu/Si nanocomposite was evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), and ultraviolet-visible absorption spectroscopy (UV-vis). The friction and wear resistance, mechanical strength, and antistatic performance of PA6-Cu/Si were also evaluated. The PA6 polymer chains prevent the Cu/Si nanoparticles from aggregation by coating the surface of the Cu/Si nanoparticles via physical adsorption or an electrostatic effect. The mass fraction of the Cu/Si nanoparticles also had a significant effect on the crystalline form of PA6. The γ crystalline form of PA6 was predominant at a high mass fraction of Cu/Si to PA6. Moreover, PA6-Cu/Si with improved mechanical properties and wear resistance was generated by tuning the amount of nano-Cu/Si filler added during the polymerization. PA6-Cu/Si with a nano-Cu/Si content of 0.5% possesses the highest tensile strength and wear resistance and shows promise in applications as a functional polymer-matrix composite.  相似文献   

2.
This research work emphasizes using pulverized biochar obtained by the pyrolysis of rice husk as a particulate reinforcement in unsaturated polyester matrix. The influence of particle size and particle loading on the mechanical and dielectric properties of particulate composites were investigated. The mean size of particles obtained through pulverizing using ball mill varied from 510 to 45 nm when milled for a duration ranging from 6 to 30 h. The particle loading in the composite varied from 0.5 to 2.5 wt%. The impact strength of the specimen having particle loading of 2.5 wt% with 45 nm particle size increased by 77.50%, and its dielectric constant increased by 7% when compared to that of cured pure resin; however, the tensile strength decreased. The biochar particles were subjected to X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and atomic force microscopy (AFM) analysis for characterization. Morphological studies were performed on tested samples by scanning electron microscope.  相似文献   

3.
This paper investigates the effect of sub‐micron size cenosphere filler and filler loading on mechanical and dry sliding wear property of polyester composites. Composites are fabricated by filling with 10 and 20 wt% of 800 and 200‐nm size of cenosphere filler particles. Neat polyester composite is also prepared for comparison analysis. Dry sliding wear test is conducted for these composites over a range of sliding distance with different sliding velocities and applied loads on a pin‐on‐disc wear test machine. Taguchi methodology and analysis of variance (ANOVA) is used to analyze the friction and wear characteristics of the composites. The artificial neural network (ANN) approach is implemented to the friction and wear data for corroboration. In this work, mechanical properties of composites such as hardness, tensile strength, tensile modulus, flexural strength, and compressive strength revealed that mechanical properties and wear resistance of the composites increase with a decrease in the particle size. The measured Young's moduli are comparable to standard theoretical prediction models. The morphology of worn composite specimens has been examined by scanning electron microscopy to understand the dominant wear mechanisms. Finally, optimal factor settings are determined using a genetic algorithm (GA). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In the present work broadband dielectric relaxation spectroscopy measurements were employed to investigate the dielectric properties of polymer composites. A polyethylene/polyoxymethylene (PE/POM) thermoplastic blend was used as a matrix, while the inclusions were iron (Fe) particles. For comparison, the two pure polymers- PE and POM- were used as a matrix, too. In the PE/POM-Fe composites, the polymer matrix is two-phase and the filler particles are localized only in the POM phase, resulting in an ordered distribution of the dispersed filler particles within the blend. In PE-Fe and POM-Fe composites, the filler spatial distribution is random. The behaviour of all the composites studied is described in terms of the percolation theory. The PE/POM-Fe composites, based on the PE/POM blend, demonstrate different electrical behaviour compared to that of POM-Fe and PE-Fe systems. The percolation threshold value of the PE/POM-Fe composites was found much lower than that of the other two systems. The results were related to the microstructure of the composites. A schematic model for the morphology of the composites studied has been proposed. This model explains the peculiar behaviour of the PE/POM-Fe composites by taking into account the ordered distribution of the filler particles in a binary polymer matrix. Optical microscopy photographs confirm this model.  相似文献   

5.
Triboelectric nanogenerator (TENG) technologies have explosive development in the field of energy harvesting and self-powered sensing. As the key element of triboelectric devices, dielectric polymers have obtained much attention in recent years. The dielectric properties of polymer determine the output performance of TENG. In this paper, we take silicone rubber as an example of dielectric polymers, to study the properties of molecular structure influence on the dielectric properties and mechanical properties by the molecular dynamics simulation method. The free volume fraction, dielectric constant, and mechanical properties of silicone rubbers with different branch chains were calculated. The dielectric constant is highly related to the free volume distribution and the dipole moments of silicone rubbers with different amounts of branch chains. For fewer branch chains silicone rubber, the free volume distribution contributes most to the dielectric constant; for more branch chains silicone rubber, the dipole moment dominates the dielectric constant. Therefore, the silicone rubber ratio has a great influence on the dielectric constant of silicone rubber. With the increase of temperature, the dielectric constant of 2-chain silicone rubber increases at first and then decreases, and the maximum value is obtained near 300 K. Therefore, it is necessary to control the temperature when silicone rubber is used as a dielectric material. This work can be a guide for improving the dielectric properties of silicone rubber, and it provides a new approach to the optimal design of high-performance triboelectric nanogenerators.  相似文献   

6.
7.
The ability of a nanoclay to improve the transport and mechanical properties of amorphous polyamide (aPA)‐based films was studied as a function of the draw ratio (DR) and the nanoclay content. The presence of nanoclay did not hinder the drawing ability as the maximum DR of the nanocomposites (NCs) and of the aPA were almost the same (51 for the aPA and from 51 to 55 for the NCs). The high degree of exfoliation and orientation along the drawing direction led to a 30% reduction in the water diffusion coefficient compared with the aPA. Moreover, the already low permeability of the aPA to oxygen was halved. The modulus of elasticity presented unusual increases both in the machine and transverse directions. Both increases of properties were attributed to the planar geometry of the oriented nanoclay sheets. The effects of the presence of nanoclay on the modulus of elasticity in the draw direction in addition to the effects caused by drawing lead to a combined modulus increase of 65% in the highly drawn 6%NC films. The nanoclay also reduced the modulus anisotropy of the films. An increase in either the nanoclay content or the DR causes a decrease in ductility due to both the stress concentrations created by the nanoclay and to the increasing number of chain segments located parallel to the drawing direction. The dimensional stability of the films greatly increased as the addition of 6% nanoclay led to a 70% decrease in creep deformation after 120 h. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a series of [3-(2-aminoethyl)amino]propyl-heptaisobutyl substituted polyhedral oligomeric silsesquioxane (AHIP) containing polyimide (PI) nanocomposites were successfully prepared. Structural, thermal and electrical properties of the polyimide nanocomposites were studied. The properties of AHIP containing polyimides were compared with those of the neat polyimide films. The surface morphology of the prepared AHIP containing polyimides were determined by using Scanning Electron Microscopy (SEM). The hydrophilic/hydrophobic nature of AHIP/polyimide composites were analyzed by measuring their water contact angles. It was found that the addition of AHIP into the polyimide slightly increased the contact angle values. The incorporation of 5% AHIP to the PI matrix decreased the dielectric constant value of pure PI from 8.6 to 11.7, respectively. Furthermore he dielectric permittivity was changed from 8.6 (neat polyimide) to 5.5 (PI3).  相似文献   

9.
Organically modified aluminosilicate hybrid materials incorporating polystyrene and poly(styrene‐co‐hydroxypropyl acrylate) latexes, (3‐glycidyloxypropyl) trimethoxysilane, and aluminum sec‐butoxide [Al(OsBu)3] were synthesized by a sol–gel process. The bulk materials obtained were macroscopically homogeneous dispersions with good mechanical properties. Dynamic mechanical and dielectric analyses of these new hybrid materials as a function of the Al(OsBu)3 concentration and copolymer composition revealed a series of transitions that represented relaxation processes of the incorporated polymer (glass transition), ?Al? O? Si?, the ?Si? O? Si? part of the network, and segmental motion of unreacted ?Si? (CH2)3OCH2CHCH2O chains. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 860–867, 2001  相似文献   

10.
The surface modification of montmorillonite clay was carried out through ion‐ exchange reaction using p‐phenylenediamine as a modifier. This modified clay was employed to prepare aromatic polyamide/organoclay nanocomposite materials. The dispersion behavior of clay was examined in the polyamide matrix. Polyamide chains were synthesized from 4‐aminophenyl sulfone and isophthaloyl chloride (IPC) in dimethylacetamide. These amide chains were suitably end‐capped with carbonyl chloride end groups to interact chemically with modified montmorillonite clay. The resulting nanocomposite films containing 2–20 wt% of organoclay were characterized by TEM, X‐ray diffraction (XRD), thin‐film tensile testing; thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and water absorption measurements. Mechanical testing revealed that modulus and strength improved up to 6 wt% organoclay loading while elongation and toughness of nanocomposites decreased with the addition of clay content in the matrix. Thermal decomposition temperatures of the nanocomposites were in the range 225–450 °C. These nanocomposites expressed increase in the glass‐transition temperature values relative to pure polyamide describing interfacial interactions among the phases. The percent water uptake of these composites reduced upon the addition of modified layered silicate depicting improved barrier properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
An in‐depth study of the surface characteristics of novel conductive carbon black Ensaco 350G has been carried out using XPS and high‐resolution vacuum FTIR. Both methods showed the existence of oxygen containing surface groups like carboxyls, carbonyls, etc. Dynamic mechanical analysis and dielectric relaxation spectra of conductive carbon black (Ensaco 350G) reinforced microcellular EPDM composites were used to study the relaxation behavior as a function of temperature (?90 to +100°C) and frequency (100–106 Hz). The effect of filler and blowing agent loadings on dynamic mechanical and dielectric relaxation characteristics has been investigated. The effect of filler and blowing agent loadings on glass transition temperature was marginal for all the composites (Tg value was in the range of ?37 to ?32°C), which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. The variation in the real and imaginary parts of the complex impedance with frequency has been studied as a function of filler and blowing agent loading. Additionally, an in‐depth study of the surface characteristics of the filler using XPS, high‐resolution vacuum FTIR and Raman spectra is also reported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This article investigates the effect of moisture on the dynamic mechanical behavior of polyamide-6 (PA6)/clay nanocomposites with dynamic mechanical analysis from −130 to 110 °C. The storage moduli increase with the clay loading for dried and moisture-absorbed samples because of the enhancing effect from the high-aspect-ratio nanoclay. Storage moduli for moisture-exposed samples are lower than those for dried samples; the longer the moisture absorption period is, the lower the moduli are for neat PA6 and PA6/clay nanocomposites. At temperatures below about 10 °C, however, samples exposed to moisture for longer periods tend to be stiffer than dried samples, probably because of the stiffening effect of ice. The peak temperature of the β relaxation shifts from −53 to −65 °C as the moisture content increases. The glass-transition temperature (Tg) or α relaxation dramatically shifts; its position is significantly lowered from 62 to 17 °C as the moisture content increases (longer moisture absorption period) and from 62 to 50 °C as the clay loading increases. The observed depression of the storage modulus and Tg may be attributed to the plasticization effect of moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1823–1830, 2004  相似文献   

13.
PA6 based nanocomposites (NCs) were reprocessed by repeated injection moulding to find out whether reprocessing is possible in these materials by means of the observation of the changes in the structure and mechanical properties. The studied variables were (a) the number of cycles (1-5), (b) the origin of the NC: either laboratory mixed or commercial and (c) the processing temperature (230 °C and 270 °C). Neat PA6 was also reprocessed as a reference material. In spite of the colour change, the Young's modulus, the solid state characteristics and the dispersion level were preserved upon reprocessing. The lack of change of chemical nature observed by FTIR, and the observed decreases in viscosity indicated that the main effect of reprocessing was a decrease in the molecular weight. At 230 °C the decreases in viscosity were smaller after reprocessing, and almost no change was seen in the structural parameters and properties. The decrease in the molecular weight after reprocessing at 270 °C leads to lower ductility and mainly to a decrease in the ability of the nPA6 matrix to cold draw. However, no change of the interphase conditions or agglomeration of the OMMT was detected and the NCs remained clearly ductile; thus, revealing a lack of deterioration of the interface and the ability of the NCs for recycling.  相似文献   

14.
Polyamide 6/ZnO nanocomposites (noted as PA6/ZnO) were prepared by an in situ co‐producing method, during which Zn2(OH)2CO3 decomposed into nano‐ZnO in the process of the opening‐ring polymerization of caprolactam at high temperature. Transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were used to analyze the size and dispersive properties of nano‐ZnO, the crystallization and melting properties, the thermal properties, and crystal structure of PA6/ZnO composite, respectively. The results showed that the nano‐ZnO derived from Zn2(OH)2CO3 via in situ polymerization of PA6‐ZnO was uniformly dispersed in PA6 matrix. However, the overall nano‐ZnO crystallization rate and crystal size in the PA6 matrix were hindered by the bulky PA6 molecular chains. The mechanical properties were evaluated using universal tensile and impact testing instruments. The results revealed that PA6/ZnO composite with 0.2% nano‐ZnO content possessed excellent tensile strength, enhanced by 75% in comparison with the pure PA6. The nano‐ZnO had little influence on the impact strength of PA6. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 165–170  相似文献   

15.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic modified montmorillonite (organoclay) were compatibilized with maleic anhydride-grafted ethylene-propylene rubber (EPRgMA). The blends were melt compounded in twin screw extruder followed by injection molding. The mechanical properties of PA6/PP nanocomposites were studied by tensile and flexural tests. The microstructure of the nanocomposite were assessed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The dynamic mechanical properties of the PA6/PP blend-based nanocomposites were analyzed by using a dynamic mechanical thermal analyzer (DMTA). The rheological properties were conducted from plate/plate rheometry via dynamic frequency sweep scans. The melt viscosity in a high shear rate region was performed by using a capillary rheometer. The strength and stiffness of the PA6/PP-based nanocomposites were improved significantly with the incorporation of EPRgMA. Adding EPRgMA to the PA6/PP blends resulted in a finer dispersion of the PP phase. TEM and XRD results revealed that the organoclay was dispersed more homogeneously in the presence of EPRgMA, however, mostly in the PA6 phase of the blends. DMTA results showed that EPRgMA worked as an effective compatibilizer. The storage (G′) and loss moduli (G″) assessed by plate/plate rheometry of PA6/PP blends increased with the incorporation of EPRgMA and organoclay. Furthermore, the apparent shear viscosity of the PA6/PP blend increased significantly for the EPRgMA compatibilized PA6/PP/organoclay nanocomposite. This was traced to the formation of an interphase between PA6 and PP (via PA6-g-EPR) and effective intercalation/exfoliation of the organoclay.  相似文献   

16.
This paper addresses the effects of operating variables on mechanical properties of polyurethane/clay nanocomposites including tensile strength, abrasion resistance, and hardness. The variables were prepolymer type, clay cation, clay content, and prepolymer–clay mixing time. The experiments were carried out based on the design of experiments using Taguchi methods. The nanocomposites were synthesized via in situ polymerization starting from two different types of prepolymers (polyether‐ and polyester‐types of polyol reacted with toluene diisocyanate), and methylene‐bis‐ortho‐chloroanilline (MOCA) as a chain extender/hardener. Montmorillonite with three types of cation (Na+, alkyl ammonium ion, and MOCA) were examined. Among the parameters studied, prepolymer type and clay cation have the most significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to polyether materials due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. The original MMT with Na+ cation results in weak improvements in mechanical properties compared to organoclays. It is observed that the stress and elongation at break, and abrasion resistance of the nanocomposite samples can be optimized with 1.5% of clay loading. The morphology and chemical structure of the optimum sample were examined by X‐ray diffraction and FT‐IR spectroscopy, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of Lucentite™ STN nanoclay on the relaxation behavior of poly(vinylidene fluoride) (PVDF) nanocomposites was investigated using dielectric relaxation spectroscopy (DRS) and wide- and small-angle X-ray scattering. Lucentite™ STN is a synthetic nanoclay based on hectorite structure containing an organic modifier between the hectorite layers. The addition of this nanoclay to PVDF results in preferential formation of the beta-crystallographic phase. When the STN content increased to 5% and 10%, only the beta-phase was observed. Bragg long period and lamellar thickness both decrease with STN addition. The relaxation rates for processes termed αa (glass transition, related to polymer chain motions in the amorphous regions) and αc (related to polymer chain motions in the crystalline regions and fold surfaces) can be described either with the Vogel-Fulcher-Tamman equation or with Arrhenius behavior, respectively. DRS shows that the αa relaxation rate increases with the concentration of STN because of the reduction of intermolecular correlations between the polymer chains, caused by the presence of layered silicate nanoclay particles, which serve to segregate polymer chains in the amorphous regions. Comparing samples with beta-crystal phase dominant, the relaxation rate for the αc relaxation also increases with concentration of STN in all nanocomposite samples. Dielectric properties at low frequencies are dominated by the dc conductivity, and as more STN is added, the conductivity increases rapidly. The addition of 10% STN makes the dc conductivity increase by almost four decades when compared with neat PVDF. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2520–2532, 2009  相似文献   

18.
Polyamide-6 nanocomposites were prepared from a new phosphonium organoclay obtained at pilot scale in supercritical carbon dioxide (scCO2) and a commercially available ammonium modified-silicate. The composites were homogenised by twin-screw extrusion, then specimens for testing were prepared by injection moulding. The clay content of the composites was varied from 0 to 7 vol.% in 7 steps. The clays were characterised in detail; they differed in their surface coverage and gallery structure, while their particle size was similar and their surface energy differed only slightly. X-ray diffraction, electronic microscopy and rheology were used for the characterisation of composite structure. Different gallery structure of the clays led to dissimilar extent of exfoliation. The phosphonium organoclay exfoliated better in PA than the silicate treated with the ammonium salt in spite of its smaller surface coverage. The nanocomposites showed the usual complex structure: besides individual platelets and intercalated stacks, large particles were also present and the development of a silicate network could be shown at large clay contents. Quantitative determination of the extent of reinforcement revealed two determining factors: contact surface and strength of interaction. The first increases with exfoliation, but the latter decreases as an effect of organophilisation. The extent of exfoliation was also estimated quantitatively, and the calculation confirmed the results of qualitative evaluation showing larger extent of exfoliation for the scCO2-prepared phosphonium clay.  相似文献   

19.
Experiments have been carried out to determine the tribological properties of laser sintered polyamide 12 (PA12). The effect of surface orientation on the wear properties was studied, which showed anisotropic behaviour. Laser sintered specimens were polished to achieve better surface finish for the wear tests. Tribological testing results showed that the wear resistance was greater and the coefficient of friction was smaller for the side surfaces as compared to the top surfaces. Experimental details and possible reasons for the results obtained are further discussed in the paper.  相似文献   

20.
Research into the electrical‐thermal aging properties of cross‐linked polyethylene (XLPE) cable has great significance, because of its wide application. This study conducted accelerated electrical‐thermal aging tests on 10‐kV XLPE cable in order to assess the cable's mechanical and dielectric properties. After being aged by applying 34.8‐kV AC voltage at the four temperatures of 90, 103, 114, and 135°C, the cable samples were taken out in five stages according to the aging time and cut into slices. The slices were conducted experiments to test the breaking elongation, tensile strength, gel content, breakdown voltage, and frequency spectrums of the dielectric constant and dielectric loss. The results demonstrate that the mechanical strength and gel content of XLPE vary greatly under different aging temperatures, a finding that is associated with the crystallization characteristics of the material. The breakdown voltage shows a slight decreasing trend with aging time. The dielectric constant decreases with aging time in high‐frequency areas (103–106 Hz), while the dielectric loss factor increases with aging time at low frequencies (10?2–0 Hz). These two parameters can be used to characterize the degree of aging in cable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号