首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(1):641-648
To explore the component synergistic effect of boron/phosphorus compounds in epoxy resin (EP), 3 typical boron compounds, zinc borate (ZB), boron phosphate (BPO4), and boron oxide (B2O3), blended with phosphaphenanthrene compound TAD were incorporated into EP, respectively. All 3 boron/phosphorus compound systems inhibited heat release and increased residue yields and exerted smoke suppression effect. Among 3 boron/phosphorus compound systems, B2O3/TAD system brought best flame‐retardant effect to epoxy thermosets in improving the UL94 classification of EP composites and also reducing heat release most efficiently during combustion. B2O3 can interact with epoxy matrix and enhance the charring quantity and quality, resulting in obvious condensed‐phase flame‐retardant effect. The combination of condensed‐phase flame‐retardant effect from B2O3 and the gaseous‐phase flame‐retardant effect from TAD effectively optimized the action distribution between gaseous and condensed phases. Therefore, B2O3/TAD system generated component synergistic flame‐retardant effect in epoxy thermosets.  相似文献   

2.
A triazine ring‐containing charring agent (PEPATA) was synthesized via the reaction between 2,6,7‐trioxa‐l‐phosphabicyclo‐[2.2.2]octane‐4‐methanol (PEPA) and cyanuric chloride. It was applied into intumescent flame retardant epoxy resins (IFR‐EP) as a charring agent. The effect of PEPATA on fire retardancy and thermal degradation behavior of IFR‐EP system was investigated by limited oxygen index (LOI), UL‐94 test, microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TG‐IR). The glass transition temperatures (Tg) of IFR‐EP systems were studied by dynamic mechanical analysis (DMA). The LOI values increased from 21.5 for neat epoxy resins (EPs) to 34.0 for IFR‐EP, demonstrating improved flame retardancy. The TGA curves showed that the amount of residue of IFR‐EP system was largely increased compared to that of neat EP at 700 °C. The new IFR‐EP system could apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers that slowed down the degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A novel mono‐component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS)‐hybrid bismuth oxide (PPMS‐Bi2O3) was synthesized and carefully characterized by FTIR, 1H NMR, 31P NMR, SEM‐EDS, and TG analyses. Then, PPMS‐Bi2O3 was utilized as flame retardant for epoxy resins (EPs), and the thermal stability, flame retardancy, and smoke suppression properties of EP composites were investigated. TG results show that PPMS‐Bi2O3 is more conducive to enhance the thermal stability and char forming ability of EP composites compared with the same addition of PPMS or the mixture of PPMS and Bi2O3, and this positive effect is enhanced with the increasing Bi2O3 content. Cone calorimeter test reveals that the PPMS‐Bi2O3 can effectively reduce the heat release and smoke production in comparison with PPMS or the mixture of PPMS and Bi2O3 due to the formation of a more compact and intumescent char against fire, as judged by digital photographs and SEM images. EDS analysis indicates that the combination PPMS and Bi2O3 by hydrogen bonds promotes to generate more phosphorus‐rich and aromatization structures in the condensed phase that enhance the barrier effect and anti‐oxidation ability of the char, thus imparting higher flame retardant and smoke suppression efficiencies to EP composites.  相似文献   

5.
A kind of polyhedral oligomeric silsesquioxanes (POSS) containing the propoxyl‐epoxy and phenyl groups (pr‐ep‐Ph‐POSS) was synthesized via hydrolytic condensation reaction. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry identified the structure of the pr‐ep‐Ph‐POSS, including major caged Si6O9 (T6), Si10O15 (T10), Si12O18 (T12), etc. The pr‐ep‐Ph‐POSS was applied into the epoxy resin to achieve EP/pr‐ep‐Ph‐POSS composites. Thermogravimetric analysis indicated that EP/pr‐ep‐Ph‐POSS showed excellent thermal properties than pure EP. The fire behaviors of EP/pr‐ep‐Ph‐POSS composites were evaluated based on the cone calorimetry, limiting oxygen index (LOI), UL‐94 vertical burning test, and smoke density test. The smoke density decreased by ~30%, the LOI value reached to 26.4%, dripping was inhibited, and the peak of heat release rate decreased by ~62%. X‐ray photoelectron spectroscopy analysis and FTIR indicated that protective‐barrier effect is the main flame‐retardant mode of action for pr‐ep‐Ph‐POSS, due to the formation of the Si‐O‐Si, Si‐O‐C, and Si‐C condensed phase, which improve the thermal stability, strength, and integrity of the char layer.  相似文献   

6.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel curing and flame‐retardant agent (PEPA‐TMAC) was successfully synthesized. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Use of PEPA‐TMAC as part of the curing agent in combination with another anhydride for a commercial epoxy resin (EP) was studied. Results of differential scanning calorimetry (DSC) indicated that PEPA‐TMAC was an effective curing agent for EP. The dynamic mechanical analysis (DMA) results showed that the glass transition temperature (Tg) and cross‐linking density (Ve) of EP composites exhibited an increase trend with the addition of PEPA‐TMAC. The limiting oxygen index (LOI) value of EP composites reached 26.9%, and the cone calorimeter results indicated that peak heat release rate (PHRR), total heat release (THR), smoke produce rate (SPR), and total smoke produce (TSP) remarkably decreased with increasing PEPA‐TMAC content. TGA data showed that the addition of PEPA‐TMAC greatly increased the amount of residual char during combustion. The morphology of the residual char was studied by SEM and showed that the addition of PEPA‐TMAC greatly increased the stability of EP composites. The thermogravimetric analysis (TGA), energy‐dispersive X‐ray spectroscopy (EDS), and FTIR results revealed the flame‐retardant mechanism that PEPA‐TMAC can promote the formation of charred layers with the phospho‐carbonaceous complexes in the condensed phase during burning of EP composites.  相似文献   

8.
Summary : Phosphorus-nitrogen intumescent product (R2000) was filled into polypropylene (PP) as a flame retardant. The neat PP and flame-retarded PP blends were studied for their structural and mechanical properties after verification of the flame retardancy character of blends. In this paper, the influence of incorporation of different amount (5%, 10%, 15%, 20%, and 25%) of R2000 was studied. The flame retardancy is evaluated by limiting oxygen index (LOI) value, which is enhanced from 17.5 for pure PP to 22.7 for the blend comprising 15% intumescent product, phosphorus-nitrogen based (R2000). The thermal degradation behaviour of the PP/R2000 blends was investigated using thermogravimetric analysis (TGA) under nitrogen (N2) and oxygen (O2) atmospheres. The influence of the R2000 on the PP crystallization was examined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Further, the mechanical properties of the materials were studied by dynamic mechanical analysis (DMA). The incorporation of the flame retardant had no effect on the crystallization of the neat polymer and the mechanical properties of the materials remained unaffected.  相似文献   

9.
《先进技术聚合物》2018,29(4):1242-1254
Extensive application of epoxy resins (EPs) is highly limited by their intrinsic flammability. Combining EPs with nanoparticles and phosphorus‐nitrogen flame retardants is an effective approach to overcome the drawback. In this work, simultaneous incorporation of octa‐aminophenyl polyhedral oligomeric silsesquioxanes (OapPOSS) and polyphosphazene into EP was reported for the first time. Significantly, reduced peak of heat release rate and UL‐94 V‐0 rating were achieved by tuning suitable ratios of polyphosphazene and OapPOSS for EP composites. During combustion, polyphosphazene promoted char formation and released nonflammable gases such as CO2, NH3, and N2 to dilute oxygen concentration and cool pyrolysis zone. Moreover, numerous phosphorus‐containing species acting as free radical scavengers were generated during degradation. Silicon dioxide evolving from OapPOSS protected char residues from thermal degradation. This study provides a novel method to fabricate high‐performance flame‐retardant EP composites, which have potential applications in the field of electrics and electronics.  相似文献   

10.
Magnetite (Fe3O4) and silver nanoparticles were synthesized via simple chemical reactions at room temperature. Poly vinyl acetate (PVAc) nano-fibers and their nanocomposites with Ag and Fe3O4 were prepared by electro-spinning method. Effect of various electric potentials and distance on the morphology and diameter of fibers were investigated. Photocatalytic properties of silver in degradation five different dyes as organic pollutants in water were investigated. Fe3O4 nanoparticles exhibit a super-paramagnetic behavior at room temperature. Nontoxic nanoparticles appropriately enhanced both thermal stability and flame retardant property of the PVAc matrix. In the presence of flame, Fe3O4 nanoparticles remain together (show resistance to drip falling because of magnetic interaction) and build a barrier against flame.  相似文献   

11.
A wrapped nanoflame retardant, designated as polyhedral oligomeric silsesquioxane (POSS)‐poly(4‐bromostyrene) (PBS)‐carbon nanotubes (CNTs), was synthesized via π‐π stacking interactions between the walls of multiwalled carbon nanotubes and the silicon‐bromine containing hybrid copolymer (designated as POSS‐PBS) that was copolymerized by 4‐bromostyrene and acryloyloxyisobutyl polyhedral oligomeric silsesquioxane. The POSS‐PBS‐CNTs exhibited good dispersibility in epoxy resin (EP) without obvious aggregation. Furthermore, the fire behaviors of this flame‐retardant EP (FR‐EP) nanocomposites were examined via limited oxygen index (LOI) and cone calorimeter (CONE) tests. The FR‐EP had an ideal LOI value of 35.3% and its residual char yield obtained from CONE test was significantly enhanced from 5.9% to 15.3% with the incorporation of 4 wt% POSS‐PBS‐CNTs and 1.33 wt% Sb2O3 into EP matrix. Additionally, the addition of 4 wt% POSS‐PBS‐CNTs or POSS‐PBS can efficiently decrease the peak heat release rate (PHRR) of EP matrix by 41.0% or 45.6%, respectively.  相似文献   

12.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough.  相似文献   

13.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

14.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

15.
A novel inorganic and organic composite flame retardant (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide [DOPO]–layered double hydroxide [LDH]) was synthesized via grafting DOPO with organic‐modified Mg/Al‐LDH, which was introduced into poly (methyl methacrylate) (PMMA) resin to prepare the flame‐retardant PMMA composites. Thermogravimetric analyzer (TGA) showed that the T‐50% of DOPO‐LDH/PMMA composites enhanced by about 20°C, and with the 20% flame retardant, the residual char content can be increased by 39.8% in the air atmosphere compared with LDH/PMMA composites. In the UL‐94 and the limiting oxygen index (LOI) tests, it can be found that compared with LDH/PMMA composites, the LOI value of DOPO‐LDH/PMMA composites were raised evidently with the increased flame retardants, and the droplet combustion was greatly improved. These results could be ascribed to the action of DOPO free‐radical, catalytic charring of polymer and the effect of LDH physical barrier. Moreover, the novel DOPO‐LDH not only given PMMA a good flame‐retardant property and thermal stability, but also have higher visible light transmittance, ultraviolet‐shielding effect, and low loss of mechanical properties, which could further facilitate the wide application of inorganic environment‐friendly flame retardants in general resins and engineering resins and broaden the application of polymers.  相似文献   

16.

The flammability and the thermal oxidative degradation kinetics of expandable graphite (EG) with magnesium hydroxide (MH) in flame‐retardant polypropylene (PP) composites were studied by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results show that EG is a good synergist for improving the flame retardancy of PP/MH composite and the effect is enhanced with decreasing EG particle size. The Kissinger method and Flynn‐Wall‐Ozawa method were used to determine the apparent activation energy (E) for degradation of PP and flame retarded PP composites. The data obtained from the TGA curve indicate that EG markedly increases the thermal degradation temperature of PP/MH composites and improves the thermal stability of the composites. The kinetic results show that the values of E for degradation of flame retarded PP composites is much higher than that of neat PP, especially PP/MH composites with suitable amount of EG, which indicates that the flame retardants used in this work have a great effect on the mechanisms of pyrolysis and combustion of PP.  相似文献   

17.
A series of UV‐curable flame retardant resins was obtained using epoxy acrylate (EA) modified with 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA). The flammability was characterized by limiting the oxygen index (LOI), UL 94 and cone calorimeter, and the thermal degradation of the flame retardant resins was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). The results indicated that the flame retardant efficiency increases and the heat release rate (HRR) decreases greatly with the content of PEPA. The TG data showed that the modified epoxy acrylates (MEAs) have lower initial decomposition temperatures and higher char residues than pure EA. The RTFTIR study indicates that the MEAs have lower thermal oxidative stability than the pure EA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Effect of metallic oxides on flame retardancy and the thermal stability of styrene butadiene rubber (SBR) composites based on ammonium polyphosphate (APP) and pentaerythritol (PER) was studied by the limiting oxygen index (LOI), UL 94, the cone calorimeter tests, and thermogravimetry analysis (TGA), respectively. Scanning electron microscopy (SEM) and wide‐angle X‐ray diffraction (WAXD) were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly. The addition of zirconium dioxide (ZrO2) at a loading of 3.4 phr could improve the UL 94 test rating of the composite to V‐0. The TGA data illustrated that the metallic oxides could enhance the thermal stability of the SBR/Intumescent flame retardant additives (IFRs) composites at high temperature and increase the residue. Cone calorimeter test gave much clear evidence that the incorporation of ZrO2 into SBR/IFRs composites resulted in the significant deduction of the heat release rate (HRR) values, and the SEM images showed that the char layers of the composites containing the metallic oxides became more compact. From the WAXD pattern, zirconium phosphate (ZrP2O7) may be formed by the reaction between ZrO2 and APP. Due to the addition of ZrO2 and the formation of ZrP2O7, the flame retardancy of the composite was improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.

Flame retardant-modified sepiolite nanofiber (PSPHD-SEP) was fabricated through chemical grafting by introducing intumescent flame retardant oligomer (PSPHD) onto the surface of sepiolite fiber. Various sepiolite/low-density polyethylene (SEP/LDPE) composites have been prepared successfully via melt blending. The dispersion of various SEPs in LDPE matrix was observed by scanning electron microscope and transmission electron microscope. The thermal degradation behaviors of various SEP/LDPE composites with 3 mass% acid-modified sepiolite fiber (a-SEP) or PSPHD-SEP have been investigated employing thermogravimetric analysis/derivative thermogravimetry. The thermal degradation kinetics of neat LDPE, a-SEP/LDPE and PSPHD-SEP/LDPE systems was comparatively analyzed by means of Friedman and Flynn–Wall–Ozawa methods to further comprehend the effect of a-SEP and PSPHD-SEP on the thermal stability of LDPE. Due to the addition of PSPHD-SEP, the limiting oxygen index value of PSPHD-SEP/LDPE composite can reach 21.3%, and the UL-94V-2 rating is obtained. The cone calorimetry (CONE) tests showed that a reduced peak heat release rate can be achieved for PSPHD-SEP/LDPE composite accompanying with gas-phase fire retardant action.

  相似文献   

20.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号