首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate a high power continuous wave (CW) diode-side-pumped Nd:YAG laser operating at 1123 nm with a plano-plano configuration. By means of precise coating, a single 1123 nm wavelength is achieved. Under the pump power of 1080 W, an output power of 219.3 W is obtained, which corresponds to an optical-optical conversion efficiency of 20.3%. To the best of our knowledge, this is the highest output power for CW 1123 nm laser based on Nd:YAG crystal.  相似文献   

2.
Xiaodong Yang  Yong Bo  Aicong Geng 《Optik》2011,122(6):467-470
A diode laser-pumped acoustic-optic Q-switched Nd:YAG master-oscillator power amplifier laser is presented. The laser is quasi continuously pumped at 1.1 kHz with a pulse width of 172 μs, and the ultrasonic frequency of the AO Q-switcher is set at a higher value (53 kHz). The master oscillator is designed as a thermally near-unstable-resonator, which presents an average output power of 48 W with a beam quality value of M2 = 1.41 and a Q-switching pulse duration of 121 ns. The maximum average power of the MOPA system is 654 W, and the beam quality is M2 = 6.  相似文献   

3.
93.7 W 1112 nm diode-side-pumped CW Nd:YAG laser   总被引:1,自引:0,他引:1  
We demonstrate a high power continuous wave (CW) infrared laser operated at 1112 nm from a diode side-pumped Nd:YAG crystal with a plano-plano symmetrical resonator. By inserting an etalon, an output power of as high as 93.7 W at 1112 nm was obtained at the pump power of 570 W with conversion efficiency of 16.4%. The beam quality factor of M2 was measured to be about 17. The wavelength tunable performance of the etalon was also analyzed. To the best of our knowledge, it is the highest output power at 1112 nm CW laser based on Nd:YAG crystal.  相似文献   

4.
We report the high efficiency of solar pumped laser. The sunlight is concentrated by the concentrator system, which is composed by the Fresnel lens and the cone-channel condenser. The power density of sunlight concentrated by the concentrator system surpasses the lasing threshold for pumping laser. In the experiment, the sunlight concentrated is coupled into the conical chamber pumping Nd:YAG laser media. Laser output of 3.5 W has been achieved; the collect efficiency is 3.5 W/m2. The conversion efficiency is 1.0% from solar power into laser, and the slope efficiency is achieved 1.86%.  相似文献   

5.
报道了一台高效率二极管泵浦Nd:YAG薄片激光器,采用高效均匀泵浦耦合技术,在峰值功率1.008kW,占空比25%, 电-光效率大于45%的二极管激光阵列泵浦下,用一块1mm厚的Nd:YAG薄片激光介质,获得了峰值功率404W,平均功率101W的准连续激光输出,光-光效率达到40%,电-光效率超过18%。  相似文献   

6.
We develop a compact and high-energy Nd:YAG slab laser system consisting of an oscillator and an amplifier for space applications. The oscillator is a diode-side-pumped electro-optically Q-switched slab laser with a cross-Porro resonator. The KD*P Pockels cell with a low driving voltage of 950 V is used to polarization output coupling. The amplifier is a Nd:YAG zigzag slab pumped at bounces. The maximum output pulse energy of 341 m3 with 13 ns pulse duration is obtained from the system at the repetition rate of 20 Hz and the beam quality factors are M2=3.1 and M2=3.5. The beam pointing stabilities of the laser system are 3.05μrad in the X-direction and 3.99 grad in the Y-direction, respectively.  相似文献   

7.
通过优化平-凹-平三镜折叠腔结构设计,利用大功率半导体激光器侧面抽运、Ⅱ类相位匹配KTP晶体腔内倍频,获得高效高功率连续绿色激光输出.当抽运电流约为36 A时,得到最高36.6 W的连续绿光激光输出,对应的光—光转换效率为8.71%.在输出功率33 W时测量激光功率稳定性,其功率不稳定度为0.27%.用刀口法测量了激光器高输出功率时的光束质量,光束质量因子小于8.对高功率抽运情况下三镜折叠腔的像散补偿、失调灵敏度和基模在腔内分布情况做了数值模拟. 关键词: 侧面抽运 腔内倍频 连续波  相似文献   

8.
In this paper, a desirably simple, convenient and inexpensive saturable absorber mirror has been fabricated based on graphene, which has no wavelength selectivity. Moreover, there are no changes in the structure and characteristics of graphene. By inserting the graphene-PMMA SA mirror to the Nd: YAG laser, the shortest pulse width of 260 ns can be obtained with the single-pulse energy of about 8.32 μJ. The experimental results prove that our graphene-PMMA SA mirror is feasible and suitable for Q-switched lasers.  相似文献   

9.
We demonstrated the highly efficient continuous wave(CW)and Q-switched infrared laser from a diodeside-pumped Nd:YAG crystal.A CW output as high as 66 W at 1319 nm was achieved under the pump power of 460 W,corresponding to a coversion efficiency of 14.3%.A maximum average power of 8.9 W of TEM00 mode was obtained in Q-switched operation at the repetition rate of 8 kHz.The performance of the laser considering the thermal lens effect induced by pump power Was also analyzed.  相似文献   

10.
A high power, quasi-continuous wave ultraviolet laser at 355 nm was obtained by intracavity frequency tripling of a diode side-pumped acousto-optic (AO) Q-switched Nd:YAG laser. Type II critical phase-matched KTP and LBO crystals were used for the second harmonic generation and the third harmonic generation, respectively. Under the pump power of 180 W, 7.8 W average output power at 355 nm was obtained at 8 kHz with the pulse width of 50 ns, corresponding to the pump-to-ultraviolet conversion efficiency of 4.3%. The peak power and single pulse energies were estimated to be 18.8 kW and 938 μJ. Its far-field divergence was measured to be about 3.8 mrad. The instability of the 355 nm laser was less than 1% at an output power of 6.3 W for 2 h operation.  相似文献   

11.
We demonstrate a kilowatt level Quasi-continuous-wave (QCW) diode-side-pumped Nd:YAG ceramic laser at 1064 nm. The laser system adopts a master oscillator power amplifier scheme (MOPA). The master oscillator contains two diode-pumped laser modules. Under the pump power of 2000 W, an output power of 686 W was obtained. After amplified by an identical ceramic laser module, a maximum output power of 1020 W was obtained under a total incident pump power of 3433 W, corresponding to an optical-optical conversion efficiency of 29.7%. At the maximal output power, the repetition frequency was measured to be 1 kHz and the pulse width was 114 μs. To the best of our knowledge, this is the first time to realize QCW side-pumped Nd:YAG ceramic laser system with output power above 1 kW.  相似文献   

12.
Zexin Song 《中国物理 B》2022,31(5):54208-054208
The influence of pumping laser pulse on the property of quasi-continuous-wave (QCW) diode-side-pumped Nd:YAG laser is investigated theoretically and experimentally. Under remaining a fixed duty cycle, the average output power increases, and the corresponding thermal focal length shorten with the increase of the pump pulse duration, which attributes to the decrease of the ratio of pulse buildup time to the pulse duration. At a pump power of 146 W, the laser output power changes from 65.1 W to 81.2 W when the pulse duration is adjusted from 150 μ s to 1000 μ s, confirming a significant enhancement of 24.7%. A laser rate equation model incorporating the amplified spontaneous emission is also utilized and numerically solved, and the simulated results agree well with the experimental data.  相似文献   

13.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

14.
The efficient cw mode locking (cw-ML) regime was demonstrated in Nd:YVO4 laser by means of saturable absorber mirror (SAM). The 0.3-at.% Nd3+ doped 10-mm-long YVO4 crystal end pumped by 20-W diode module with a beam shaper was applied as a gain medium located in the close vicinity to the rear flat mirror of the first arm of Z-type resonator of 316 cm total length with two curved mirrors of 100-cm curvature radii. The SAM of 2%-saturable absorptance and saturation fluence of 50 μJ/cm2 was mounted at the opposite end of a resonator. The developed “dynamically stable” cavity design mitigates detrimental role of thermal aberration in gain medium, enforcing clean perfect mode locking even for the highest pump densities. The cw-ML pulses with 47.5 MHz repetition rate and pulse durations in the range of 15–20 ps were observed for a wide range of pump powers and output coupler losses. In the best case, for 32% of output coupler transmission, up to 6.2 W of average power with near 35% slope efficiency was achieved. The thresholds for Q-switched ML, cw-ML regimes were 2.67 W and 6.13 W of pump power, respectively. For the maximum pump power of 20 W we obtained 133 nJ of pulse energy with 16-ps pulse duration, resulting in a peak power higher than 8 kW. The threshold energy density at SAM giving the QML regime was estimated to be about 30 μJ/cm2, threshold of cw-ML regime was 220 μJ/cm2.  相似文献   

15.
Continuous-wave green laser with a maximum power of 34 W has been obtained by intracavity frequency doubling with KTP in diode-side-pumped Nd:YAG. The Nd:YAG/KTP green laser has a simple three- mirror V-fold cavity structure. The optical-to-optical conversion efficiency is 9.5%. The instability of the laser is measured when the output powers are near 16, 21, 30, and 34 W after the beam is filtered. At the maximum output power, the M^2 factor is measured to be 8.  相似文献   

16.
研制了五组双线二极管列阵侧面泵浦Nd: YAG棒的高效率、高功率激光头。将一块90° 石英旋光片插入两个这样的激光头中间并置入热近非稳对称平平腔,产生了1157 W高光束质量(M2 ~ 39)1064 nm连续波输出,据我们所知,这是侧面泵浦双棒Nd: YAG激光器产生的最高功率。  相似文献   

17.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

18.
A prototype split-disk amplifier consisted of four Nd:YAG ceramics and single crystals was demonstrated with a 3.7 cm square clear aperture. A single-pass small-signal gain of 2.0 and a total stored energy of 11.1 J in the eight YAG disks were obtained. The maximum output energy of 10.4 J with the YAG disk amplifier was achieved in a single-shot operation. A near-field pattern of 31 mm × 31 mm square with super Gaussian shape was measured.  相似文献   

19.
A high efficiency, high beam quality diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with six amplifier stages is demonstrated. The oscillator with two-rod birefringence compensation was designed as a thermally determined near hemispherical resonator, which presents a pulse energy of 223 mJ with a beam quality value of M2 = 1.29 at a repetition rate of 108 Hz. The MOPA system delivers a pulse energy of 5.1 J with a pulse width of 230 μs, a M2 factor of 3.6 and an optical-to-optical efficiency of 38.5%. To the best of our knowledge, this is the highest pulse energy for a diode-pumped Nd:YAG rod laser operation with a high beam quality and a pulse width of hundreds of microseconds at a repetition rate of over 100 Hz.  相似文献   

20.
Considering the reabsorption loss of the quasi-three level system and the unsaturable loss of the saturable absorber, we obtained the operating condition of a diode-pumped simultaneous dual-wavelength Q-switched Nd:YAG laser operating at 1.06 μm and 946 nm. The dual-wavelength pulsed laser was realized successfully through adaptive coating design of the cavity mirrors. As much as 1.6 W total average output power of the dual-wavelength at 1.06 μm and 946 nm was achieved at the incident pump power of 14.2 W with an optical conversion efficiency of 11.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号