首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The magnetization curves of CoFe2O4 ferrofluids, p-NiFe2O4 paramagnetic fluids and CoFe2O4–p-NiFe2O4 binary ferrofluids, in which the volume fraction of CoFe2O4 particles φ Co is 0.6% and one of p-NiFe2O4 particles φ Ni is 0.2%, 0.4%, 0.6% and 0.8% respectively, prepared by the Massart method, have been measured at room temperature. Comparison of the experimental data from the CoFe2O4 ferrofluids with the Langevin theory curves demonstrates a considerable difference between them, but a curve fitted using a model of a gas-like compression (MGC) agrees with the experimental data very well. The experimental results show that the magnetization of the CoFe2O4–p-NiFe2O4 binary ferrofluid is not a simple summation of the ferrimagnetic CoFe2O4 part and the paramagnetic p-NiFe2O4 part. From the fitted results, it was found that the saturation magnetization of the CoFe2O4 part of the binary ferrofluid depends non-monotonically on the p-NiFe2O4 particle volume fraction, and the CoFe2O4 part is a stronger “hard” magnet than CoFe2O4 in simple ferrofluids. The magnetization behavior of the binary ferrofluids is explained by the modification of the microstructure of CoFe2O4 nanoparticle system by the p-NiFe2O4 nanoparticle system.  相似文献   

2.
In binary ferrofluids composed of ferromagnetic γ?Fe2O3/Ni2O3 composite nanoparticles (A particles) and noncrystalline Fe2O3 nanoparticles (B particles), the A particles alone will form chain-like aggregates upon application of a magnetic field. Due to both the long-range ‘magnetic convergent force’ (FC) and the short-range ‘magnetic divergent force’ (FD), the A-particle chains immersed in the B-particle ‘sea’ will move in a manner similar to the process of vibrational damping. The apparent damping of the ferrofluids will vary from weak to overdamping according to the motion of the chains, so that the intensity of light transmitted through a ferrofluid film along the direction of the field would tend to stabilize after a period of rapid decrements and increments. In binary ferrofluids, the B-particle system can produce a modulation effect on both the damping and the driving force, further stabilizing the behavior of the transmitted light. At low fields (e.g., 500 Gs, 900 Gs) only the modulation of the viscosity drag force (Fv) is considerable, so that overdamping increases linearly with B-particle volume fraction (ФB), and the variation in the transmitted light is much slower during the process tending towards stability as ФB increases. However, at high fields (e.g., 1300 Gs) the polarization of the B-particle ‘sea’ is enhanced, so that FD is modulated as well as Fv (i.e., both the practical damping and driving forces are modulated simultaneously). Thus, the apparent overdamping of the binary ferrofluids system will vary non-linearly as ФB increases, and the transmitted light will tend to stabilize faster for ferrofluids with high ΦB than for those with low ФB at an applied magnetic field of 1300 Gs.  相似文献   

3.
In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 and ferrimagnetic oxide/ferromagnetic metal CoFe2O4/CoFe2 nanocomposite. The latter compound is a good system to study hard ferrimagnet/soft ferromagnet exchange coupled. Two steps were followed to synthesize the bimagnetic CoFe2O4/CoFe2 nanocomposite: (i) first, preparation of CoFe2O4 nanoparticles using a simple hydrothermal method, and (ii) second, reduction reaction of cobalt ferrite nanoparticles using activated charcoal in inert atmosphere and high temperature. The phase structures, particle sizes, morphology, and magnetic properties of CoFe2O4 nanoparticles were investigated by X-Ray diffraction (XRD), Mossbauer spectroscopy (MS), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) with applied field up to 3.0 kOe at room temperature and 50 K. The mean diameter of CoFe2O4 particles is about 16 nm. Mossbauer spectra revealed two sites for Fe3+. One site is related to Fe in an octahedral coordination and the other one to the Fe3+ in a tetrahedral coordination, as expected for a spinel crystal structure of CoFe2O4. TEM measurements of nanocomposite showed the formation of a thin shell of CoFe2 on the cobalt ferrite and indicate that the nanoparticles increase to about 100 nm. The magnetization of the nanocomposite showed a hysteresis loop that is characteristic of exchange coupled systems. A maximum energy product (BH)max of 1.22 MGOe was achieved at room temperature for CoFe2O4/CoFe2 nanocomposites, which is about 115% higher than the value obtained for CoFe2O4 precursor. The exchange coupling interaction and the enhancement of product (BH)max in nanocomposite CoFe2O4/CoFe2 are discussed.  相似文献   

4.
While a suitable magnetic field is applied to a ferrofluids film, magnetic nanoparticles in the film would form chain-like structure. Because of the action of magnetic convergent force (MCF) and magnetic divergent force (MDF), the chains will move coordinately towards to the axis of the field, then do apart from the center. From geometric shadowing effect, variation in the intensity of light transmitted through ferrofluids film is in relation to the coordinate motion of the chains. And a radiate synchromotion of the chain groups is constructed equivalently for describing the relation between transmitted light's intensity varying and chains moving. From the motion equation of one chain group, the relation is illustrated qualitatively by computer simulation. The experimental results show that the field-induced variation of light transmitted through ferrofluids film is a nonlinear relaxation process with intrinsic noise, and are in agreement with the behavior simulated by using the model of coordinated chains motion (MCCM).  相似文献   

5.
Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni–NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2–CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (–COOH) functional groups were added to the SiO2–CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα–Bis(carboxymethyl)-l-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2–CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.  相似文献   

6.
Magnetic nanoparticles of CoFe2O4 have been synthesized under an applied magnetic field through a co-precipitation method followed by thermal treatments at different temperatures, producing nanoparticles of varying size. The magnetic behavior of these nanoparticles was investigated. As-grown nanoparticles demonstrate superparamagnetism above the blocking temperature, which is dependent on the particle size. One of the nanoparticles demonstrated a constricted magnetic hysteresis loop with no or small coercivity and remanence at low magnetic field. However, the loop opens up at high magnetic field. This magnetic behavior is attributed to the preferred Co ions and vacancies arrangements when the CoFe2O4 nanoparticles were synthesized under an applied magnetic field. Furthermore, this magnetic property is strongly dependent on the high temperature heat treatments that produce Co ions and vacancies disorder.  相似文献   

7.
We have prepared composite magnetic core–shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe2O4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe2O4 nanoparticles were controlled in the range of 2.4–6.7 nm by the concentration of [NH4+] and heated temperature. The magnetic properties of the core–shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe2O4.  相似文献   

8.
Aqueous ferrofluids based on Mn and Co ferrites have been synthesized by a novel method. Mössbauer spectra of dried samples (average particle diameter ≈ 10 nm) were measured in the 77–340 K temperature range. CoFe2O4 spectra show no superparamagnetic (SP) relaxation, in accordance with the high magnetic anisotropy of this compound. MnFe2O4 spectra exhibit SP relaxation, from which an effectiveK=(8±3)×104 J/m3 is estimated. This value represents a 20× enhancement over intrinsic magnetocrystalline anisotropy.  相似文献   

9.
Self-heating from magnetic nanoparticles under AC magnetic field can be used either for hyperthermia or to trigger the release of an anti-cancer drug, using thermo-responsive polymers. The heat generated by applying an AC magnetic field depends on the properties of magnetic nanoparticles (composition, size, crystal structure) as well as the frequency and amplitude of the magnetic field. Before these systems can be efficiently applied for in vitro or in vivo studies, a thorough analysis of the magnetically induced heating is required. In this study, CoFe2O4 nanoparticles were synthesized, dispersed in water, and investigated as heating agents for magnetic thermo-drug delivery and hyperthermia. The temperature profiles and infrared (IR) camera images of heat generation of CoFe2O4 nanoparticles under various AC magnetic fields of 127–700 Oe at 195, 231, and 266 kHz were measured using an IR thermacam, excluding the external AC magnetic field interruption. The CoFe2O4 nanoparticles were successfully dispersed in water using an 11-mercaptoundecanoic acid ligand exchange method to exchange the solvent used for synthesis of hexane for water. During the heating experiments, each of CoFe2O4 nanoparticle solutions reached a steady state where the temperature rose between 0.1 and 42.9 °C above ambient conditions when a magnetic field of 127–634 Oe was applied at 231 or 266 kHz. The heat generation was found to be dependent on the intensity of AC magnetic field and applied frequency. Therefore, the desired heating for magnetically triggered drug delivery or hyperthermia could be achieved in water-dispersed CoFe2O4 nanoparticles by adjusting the AC magnetic field and frequency.  相似文献   

10.
Cobalt ferrite (CoFe2O4) nanoparticles embedded in amorphous silica can be synthesized by using tetraethylorthosilicate (TEOS) and metallic nitrates as precursors. A well-established silica matrix network provides nucleation locations for CoFe2O4 nanoparticles, thus confining their growth and aggregation. The structural and magnetic properties show strong dependence on the variation of particle size caused by annealing temperature and CoFe2O4 ratio, resulting in higher crystallization, saturation magnetization Ms and remanent magnetization Mr as the annealing temperature and CoFe2O4 ratio increase. But the variation of coercivity Hc is not in accordance with that of Ms and Mr, indicating that Hc is not determined by the size of CoFe2O4 nanoparticles only. The realization of the adjustable particle sizes and the controllable magnetic properties makes the applicability of CoFe2O4 even more versatile.  相似文献   

11.
It is shown that magnetoreflectance of natural light up to +4% exists in magnetostrictive ferrimagnetic spinel CoFe2O4 single crystal; this effect is associated with a change of the fundamental absorption edge, the impurity absorption band, and the phonon spectrum under the action of a magnetic field. The correlation between the field dependences of magnetoreflectance and magnetostriction has been established. The physical mechanisms responsible for the spectral and field peculiarities of magnetoreflection have been explained. It is shown that the magnetorefractive effect in CoFe2O4, which is associated with magnetoelastic properties of the spinel, amounts to +1.5 × 10–3 in magnetic fields exceeding the saturation field. Analysis of magnetooptical and magnetoelastic data has made it possible to estimate deformation potential as Ξ u = 20 eV for the valence band of the spinel.  相似文献   

12.
The relaxation characteristics of magnetic nanoparticles (CoFe2O4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.  相似文献   

13.
CoFe2O4 ferrite nanoparticles were prepared by a modified chemical coprecipitation route. Structural and magnetic properties were systematically investigated. X-ray diffraction results showed that the sample was in single phase with the space group . The results of field-emission scanning electronic microscopy showed that the grains appeared spherical with diameters ranging from 20 to 30 nm. The composition determined by energy-dispersive spectroscopy was stoichiometry of CoFe2O4. The Curie temperature in the process of increasing temperature was slightly higher than that in the process of decreasing temperature. This can be understood by the fact that heating changed Co2+ ion redistribution in tetrahedral and in octahedral sites. The coercivity of the synthesized CoFe2O4 samples was lower than the theoretical values, which could be explained by the mono-domain structure and a transformation from ferrimagnetic to superparamagnetic state.  相似文献   

14.
The fabrication of condensed silica and mesoporous silica coated spinel CoFe2O4 and FeCo alloy magnetic nanocomposites are reported. The encapsulation of well-defined 5 nm thick uniform silica layer on CoFe2O4 magnetic nanoparticles was performed. The formation of mesopores in the shell was a consequence of removal of organic group of the precursor through annealing. The NiO nanoparticles were loaded into the mesoporous silica. The mesoporous silica shells leads to a larger coercivity than that of pure CoFe2O4 magnetic nanoparticles due to the decrease of interparticle interactions and magneto-elastic anisotropy. In addition, the FeCo nanoparticles were coated by condensed and mesoporous silica. The condensed silica can protect the reactive FeCo alloy from oxidation up to 300 °C. However, saturation magnetization of FeCo nanoparticles coated by silica after 400 °C annealing is dramatically decreased due to the oxidation of the FeCo core. The mesoporous silica coated magnetic nanostructure loaded with NiO as a final product could be used in the field of biomedical applications.  相似文献   

15.
This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.  相似文献   

16.
Magnetic order and coupling at the interfaces of highly spin polarized Fe3O4 heterostructures have been determined by surface sensitive and element specific soft X-ray spectroscopy and spectro-microscopy techniques. At ambient temperature, the interface between paramagnetic CoCr2O4 or MnCr2O4 and ferrimagnetic Fe3O4 isostructural bilayers exhibits long range magnetic order of Co, Mn and Cr cations which cannot be explained in terms of the formation of interfacial MnFe2O4 or CoFe2O4. Instead, the ferrimagnetism is induced by the adjacent Fe3O4 layer and is the result of the stabilization of a spinel phase not achievable in bulk form. Magnetism at the interface region is observable up to 500 K, far beyond the chromite bulk Curie temperature of 50-95 K.  相似文献   

17.
Relaxation behavior measuring of transmitted light through ferrofluids film   总被引:2,自引:0,他引:2  
In this paper, relaxation behavior of transmitted light through thin ferrofluid film under an applied magnetic field is measured. The results show that the intensity of transmitted light through a ferrofluid film increases quickly as soon as an external magnetic field is applied then weakens with time. If uniformity of the field is poor, the transmission of light continuously decreases in a measured duration. Otherwise, the transmission of light will tend increasingly towards a stable value after it decreases to a minimum value while the gradient of the field is low. The relaxation time would increase to an order of some hundreds seconds magnitude and is dependent on the strength of magnetic field and viscosity of the ferrofluids. The field-induced relaxation behaviors of transmitted light through ferrofluids correspond to anisotropic microstructure of the ferrofluids under applied magnetic field. PACS 75.50.Mm; 78.20.Ls  相似文献   

18.
Normally, CoFe2O4 has been known as ferromagnetic ferrite with a quite large magnetic moment. However, since we aim to inject the particles into the human body, we are also interested in ZnFe2O4 because in the human body, Fe and Zn exist, so that adding ZnFe2O4 is safer. In both cases, the nanoparticles are coated by silica in order to get rid of toxicity. Our main purpose is to test whether these nanoparticles affect the contractile function of heart cells. Our results on rat’s heart cells have shown that both Zn and Co ferrites improved the contractility of heart cells. Notably, although both nanoparticles increased contraction and delayed relaxation, Co ferrites induced a greater contraction but with a slower relaxation. We can theoretically argue that the magnetization effects of the quantum dots have a considerable effect on the pulsating properties of the heart cells. Through this effect, the locally applied magnetic field is able to induce as well as turn on/off various regular beating patterns, thus, resetting the heart beatings.  相似文献   

19.
Cobalt ferrite (CoFe2O4) nanoparticles were synthesized by using the hydrothermal route with the addition of trisodium citrate dihydrate (Na3CA·2H2O). The formation of CoFe2O4 nanoparticles with size ranging from 13 to 19 nm was confirmed by X-ray diffraction, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy; the clear-cut sharp of the nanoparticles was observed by transmission electron microscopy. By these characterization methods, the evolution of lattice constant and morphologies of the nanoparticles with the addition of Na3CA·2H2O is observed. Furthermore, the magnetic hysteresis loops measured at room temperature indicate that the magnetic properties of the products also show clear relationship with the masses of Na3CA·2H2O. For example, coercivity and high-field paramagnetic susceptibility increase with the increasing masses of Na3CA·2H2O, whereas the saturation magnetization and the effective magnetic anisotropy constant have the maximum values as the mass of Na3CA·2H2O is 1 g. This change of magnetic properties is related with the expanded lattice and the varied size and shape because of the addition of Na3CA·2H2O.  相似文献   

20.
A kind of magnetic multiple functional groups nanocomposites, chitosan–ethylenediaminetetraacetate (EDTA)-enwrapped CoFe2O4 nanoparticles, i.e. CoFe2O4@chitosan–EDTA nanocomposites were synthesized by a facile zero-length emulsion crosslinking process. In this method, CoFe2O4 was used as magnetic core, and 1-ethyl-3-(3-dimethylminopropyl) carbodiimide hydrochloride (EDAC) was used as a crosslinker, integrating amino group of chitosan and carboxyl group of EDTA. Determination of amino groups in chitosan modified by EDAC-activated EDTA was carried out through the trinitrobenzenesulfonic acid (TNBS) method. The as-prepared magnetic nanocomposites were characterized by XRD, FT-IR, XPS, SEM, EDS, TEM, SAED and vibrating sample magnetometer (VSM), and the results showed that the as-prepared CoFe2O4@chitosan–EDTA nanocomposites have good dispersibility, spherical shape and enough magnetization. The method proposed can be extended to fabricate other magnetic nanocomposites possessed amino and carboxyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号