首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cunningham V  Lamela H 《Optics letters》2010,35(20):3387-3389
We describe a spectroscopic comparative analysis based on the optoacoustic technique over the wavelength range from 410nm to 1000nm using a Q-switched Nd:YAG pumped optical parametric oscillator tunable source on a gold nanostructure solution located within a highly scattering medium. The advantages of this method over standard spectroscopy techniques are the possibility to localize and monitor the spectroscopic response of absorbing materials located within turbid media. The operation is confirmed using a comparative analysis with the spectroscopic results obtained from a reference measurement scheme, based on a highly sensitive collimated optical transmission setup in parallel and under the same experimental conditions as the optoacoustic technique.  相似文献   

2.
Polarization is indicative of material anisotropy, a property that reveals structural orientation information of molecules inside the material. Herein we investigate whether polarization can be detected optoacoustically in scattering and absorbing tissues. Using a laboratory prototype of polarization-sensitive optoacoustic tomography, we demonstrate high-resolution reconstructions of dichroism contrast deep in optically diffusive tissue-mimicking phantoms. The technique is expected to enable highly accurate imaging of polarization contrast in tissues, far beyond the current capabilities of pure optical polarization-imaging approaches.  相似文献   

3.
Gerken M  Faris GW 《Optics letters》1999,24(23):1726-1728
We demonstrate that absorption coefficient micro(a) and reduced scattering coefficient micro(s)(?) of a small turbid object can be measured to high accuracy with a frequency-domain immersion technique. For this technique the sample is immersed in a calibrated scattering medium and the optical properties are obtained from a differential measurement. Compared with conventional approaches, the immersion technique improves accuracy, minimizes variations owing to probe coupling and motion, reduces the effects of boundary conditions, and offers simple and rapid measurement once the immersion medium is calibrated. Accuracy tests of immersion-based measurements of micro(a) and micro(s)(?) agree with reference values to within 3.6% and 2.6%, respectively. These tests are limited by the accuracy of the reference samples rather than by the accuracy of the immersion medium or the precision of the immersion approach. We demonstrate the in vivo capabilities of the technique through time-resolved measurements of micro(a) and micro(s)(?) for a human hand during cuff occlusion on the upper arm.  相似文献   

4.
We present a photon noise and diffraction-limited imaging method combining an imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this Letter, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging technique, and we demonstrate the suppression of the parasitic feedback.  相似文献   

5.
The Sensitivity Function-based Conjugate Gradient Method (SFCGM) is described. This method is used to solve the inverse problems of function estimation, such as the local maps of absorption and scattering coefficients, as applied to optical tomography for biomedical imaging. A highly scattering, absorbing, non-reflecting, non-emitting medium is considered here and simultaneous reconstructions of absorption and scattering coefficients inside the test medium are achieved with the proposed optimization technique, by using the exit intensity measured at boundary surfaces. The forward problem is solved with a discrete-ordinates finite-difference method on the framework of the frequency-domain full equation of radiative transfer. The modulation frequency is set to 600 MHz and the frequency data, obtained with the source modulation, is used as the input data. The inversion results demonstrate that the SFCGM can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by significantly reducing a cross-talk between inter-parameters. It is also observed that the closer-to-detector objects are better retrieved.  相似文献   

6.
This work presents an original, comparative study between two optical techniques for the analysis of thermal lensing induced by a low-power, cw laser beam focused onto a sample cell containing a weak absorbing medium. It deals with an interferometric technique and a Z-scan technique in real time. The interferometric method permits the determination of the spatial profile of the thermal lens. The development of the work puts in evidence the high sensitivity of both techniques for the detection and measurement of low absorption coefficients and refractive index changes in dye solutions at very low concentrations. Improvements in the sensitivity of both methods can make possible the measurement of very small phase shift distortions of the wavefront. One shows also the mutual complementary character of two techniques for the characterization and measurement of linear and nonlinear properties of materials.  相似文献   

7.
Liao CK  Li ML  Li PC 《Optics letters》2004,29(21):2506-2508
Optoacoustic imaging takes advantage of high optical contrast and low acoustic scattering and has found several biomedical applications. In the common backward mode a laser beam illuminates the image object, and an acoustic transducer located on the same side as the laser beam detects the optoacoustic signal produced by thermoelastic effects. A cross-sectional image is formed by laterally scanning the laser beam and the transducer. Although the laser beam width is generally narrow to provide good lateral resolution, strong optical scattering in tissue broadens the optical illumination pattern and thus degrades the lateral resolution. To solve this problem, a combination of the synthetic aperture focusing technique with coherence weighting is proposed. This method synthesizes a large aperture by summing properly delayed signals received at different positions. The focusing quality is further improved by using the signal coherence as an image quality index. A phantom comprising hair threads in a 1% milk solution was imaged with an optoacoustic imaging system. The results show that the proposed technique improved lateral resolution by 400-800% and the signal-to-noise ratio by 7-23 dB over conventional techniques.  相似文献   

8.
Ruan H  Mather ML  Morgan SP 《Optics letters》2012,37(10):1658-1660
Pulse inversion acoustic imaging is useful as it allows second harmonic imaging to be obtained with short acoustic pulses. This allows high axial resolution, but removes any overlap in the frequency spectra of fundamental and harmonic. We demonstrate pulse inversion ultrasound modulated optical tomography using an optical speckle based detection method. Inverted and non-inverted acoustic pulses combined with synchronized strobed illumination are applied to an optically scattering medium. Over the acquisition time of a camera, multiple pulses are summed and at the next frame the phase of the ultrasound is shifted by π/2 and the process repeated. Combining the two frames allows a second harmonic signal to be obtained. A reduction in linewidth is observed (DC=9.26 mm, fundamental=4.02 mm, second harmonic=2.43 mm) in line scans of optically absorbing objects embedded in a scattering medium (thickness=16 mm, scattering coefficient=2.3 mm(-1), anisotropy factor=0.938).  相似文献   

9.
综述了已有散射介质超衍射极限聚焦和成像技术的研究现状及进展。首先介绍了这一领域的研究背景及意义,以及已有超衍射极限成像技术的发展现状;然后给出了应用于超衍射极限成像的散射介质定义;其次分析了时间反演技术在声学、微波领域聚焦上的应用,介绍了时间反演法在光学领域超衍射极限聚焦应用中的实现方法,总结了散射介质加入到光学系统中的作用,分析了利用反馈控制调节和光学相位共轭方法进行散射介质超衍射极限聚焦方法的特点;讨论了基于空域和空频域传输矩阵测量的散射介质宽场成像方法及在该目的下的散射介质制备方法;最后给出了散射介质光学超衍射极限成像技术研究前景及展望。  相似文献   

10.
We report the first experimental test of an analytic image reconstruction algorithm for optical tomography with large data sets. Using a continuous-wave optical tomography system with 10(8) source-detector pairs, we demonstrate the reconstruction of an absorption image of a phantom consisting of a highly scattering medium containing absorbing inhomogeneities.  相似文献   

11.
We report on the experimental measurement of the backscattering matrix of a weakly scattering medium in optics, composed of a few dispersed gold nanobeads. The decomposition of the time-reversal operator is applied to this matrix and we demonstrate selective and efficient focusing on individual scatterers, even through an aberrating layer. Moreover, we show that this approach provides the decomposition of the scattering pattern of a single nanoparticle. These results open important perspectives for optical imaging, characterization, and selective excitation of nanoparticles.  相似文献   

12.
Visualizing optical properties, such as the optical absorption coefficient, helps us to obtain structural information of biological tissues. In this paper, we present an efficient reconstruction algorithm for optical energy deposition in backward optoacoustic imaging. Note that econstruction of optical energy deposition is the first step to imaging the optical absorption coefficient distribution. This algorithm is derived from the optoacoustic wave equations with line focusing, in which the focusing techniques were utilized to reduce the reconstruction problem from three dimensions (3-D) to one dimension (1-D). Simulations and experiments were conducted to verify efficacy of this algorithm. In the simulations, optoacoustic signals were generated based on the solution of the optoacoustic wave equations. In the experiments, a 3-D backward mode optoacoustic imaging system was built. The system consisted of a Nd YAG laser for optical irradiation and an acoustic detection system with a broadband hydrophone. A phantom was used to illustrate validity of the proposed algorithm. The results show that optical energy deposition can be efficiently reconstructed in both simulations and experiments.  相似文献   

13.
In this paper, we present a novel and completely different approach to the problem of scattering material characterization: measuring the degree of predictability of the time series. Measuring predictability can provide information of the signal strength of the deterministic component of the time series in relation to the whole time series acquired. This relationship can provide information about coherent reflections in material grains with respect to the rest of incoherent noises that typically appear in non-destructive testing using ultrasonics. This is a non-parametric technique commonly used in chaos theory that does not require making any kind of assumptions about attenuation profiles. In highly scattering media (low SNR), it has been shown theoretically that the degree of predictability allows material characterization. The experimental results obtained in this work with 32 cement probes of 4 different porosities demonstrate the ability of this technique to do classification. It has also been shown that, in this particular application, the measurement of predictability can be used as an indicator of the percentages of porosity of the test samples with great accuracy.  相似文献   

14.
We demonstrate the application of laser-speckle statistics formed by a variable-coherence source illuminating a scattering medium, for determining the scattering parameter mu;(s)>(?) of a diffusion model for the medium. Furthermore, we apply this technique to visualize laterally localized inhomogeneities embedded within a highly scattering sample.  相似文献   

15.
We present what is believed to be the first simultaneous reconstruction of the internal scattering and absorbing properties of a highly scattering medium by use of purely temporal data. These results are also the first acquired with the multichannel time-resolved imaging system developed at University College London.  相似文献   

16.
Sonoluminescent tomography of strongly scattering media   总被引:1,自引:0,他引:1  
Wang LV  Shen Q 《Optics letters》1998,23(7):561-563
A novel optical imaging technique called sonoluminescent tomography was developed for cross-sectional imaging of strongly scattering media noninvasively. Sonoluminescence, which was generated internally in the medium by cw ultrasound, was used to produce a two-dimensional image of an object embedded in a scattering medium by means of raster scanning the medium. The image had a high contrast and good spatial resolution. The spatial resolution was limited by the focal-spot size of the ultrasound, and one could improve the resolution by tightening the focus. This inexpensive imaging technique has potential applications in medicine and other fields related to scattering media.  相似文献   

17.
In this paper we demonstrated the effectiveness of imaging in a tissue phantom with isotropic scattering using polarization discrimination combined with the time gating method. This simple polarization discrimination technique was shown ineffective when it was applied to filamentous tissues. In this situation, we utilized the time-gated degree of polarization (DOP) imaging technique to show that the DOP measurement was quite effective for high-quality imaging of objects in filamentous tissues. We also applied this technique to the characterization of myocardial tissues and showed the difference between normal and abnormal tissues. In addition, we demonstrated a novel method for target depth determination in a turbid medium based on co-polarized light measurements. This method relied on the strong dependence of transmitted co-polarized intensity on target depth.  相似文献   

18.
In this paper a spectroscopic characterisation method based on the optoacoustic technique has been used to investigate the optical properties of two separate spherical gold nanoparticle (SGNP) solutions where an absorption peak located at 520 nm has been observed. This analysis has been carried out over the visible wavelength range from 410 to 650 nm using a Q-switched Nd:YAG pumped optical parametric oscillator (OPO). To verify the reliability of optoacoustic spectroscopy (OAS), the results obtained have been compared to those from more standard and limited spectrophotometer and reference collimated optical transmission schemes, where good agreement is shown. The experimental procedure presented here demonstrates the potential of this technique for integration along with optoacoustic imaging methods to identify physiological information for non-destructive in-vivo applications.  相似文献   

19.
Bossy E  Sui L  Murray TW  Roy RA 《Optics letters》2005,30(7):744-746
Acousto-optic sensing (AOS) is a dual-wave sensing technique based on the ultrasound modulation of diffuse light in a turbid medium. We experimentally demonstrate the feasibility of combining AOS and conventional ultrasound imaging by use of a commercially available pulsed-ultrasound scanner coupled with a photorefractive crystal-based optical interferometry system. Optically absorbing targets embedded in highly diffusive phantoms (mus'= 10 cm(-1)) are imaged through a thickness of 27 mm with millimeter resolution. The acousto-optic images are intrinsically coregistered with the ultrasound images.  相似文献   

20.
Based on the principles of geometric optics, the ray-tracing technique has been extensively used to compute the single-scattering properties of particles whose sizes are much larger than the wavelength of the incident wave. However, the inhomogeneity characteristics of internal waves within an absorbing particle, which stem from a complex index of refraction, have not been fully taken into consideration in the geometric ray-tracing approaches reported in the literature for computing the scattering properties of absorbing particles. In this paper, we first demonstrate that electromagnetic fields associated with an absorbing particle can be decomposed into the TE and TM modes. Subsequently, on the basis of Maxwell's equations and electromagnetic boundary conditions for the TE-mode electric field and the TM-mode magnetic field, we derive generalized Fresnel reflection and refraction coefficients, which differ from conventional formulae and do not involve complex angles. Additionally, a recurrence formulism is developed for the computation of the scattering phase matrix of an absorbing particle within the framework of the conventional geometric ray-tracing method. We further present pertinent numerical examples for the phase function and the degree of linear polarization in conjunction with light scattering by individual absorbing spheres, and discuss the deviation of the geometric optics solutions from the exact Lorenz-Mie results with respect to size parameter and complex refractive index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号