首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pulse laser-diode-array (LDA)-pumped, single-axial-mode, intracavity frequency-doubled Nd:YVO4 laser has been demonstrated by using an birefringent filter consisting of a KTP crystal and two Brewster plates (BP). Up to 72.4 mW average output power is obtained for 800 mW pumping power with an optical-to-optical conversion efficiency of 9.1%. The maximum peak power of the single-frequency green laser is 22.3 W with the pulse width 162 μs.  相似文献   

2.
We report an efficient intracavity second-harmonic generation (SHG) at 1359 nm in a non-linear optical crystal, LiB3O5 (LBO), performed with a diode end pumped continuous-wave (cw) Nd:Lu2O3 laser. In the case of a laser with a Nd:Lu2O3 crystal frequency-doubled with a LBO crystal cut for type I frequency doubling. A cw SHG output power of 462 mW has been obtained using a 10 mm long LBO crystal. The red power stability was 3.4% in 4 h.  相似文献   

3.
A laser-diode end-pumped acousto-optic (AO) Q-switched Nd:YVO4/KTP red laser by using a plano-concave cavity was demonstrated for the first time. This linear cavity configuration could guarantee not only moderate intracavity focusing on KTP crystal but also good beam quality. Under the absorbed pump power of 14.8 W, the maximum average output power at 671 nm was obtained to be 1.37 W at the repetition frequency of 15 kHz, with the corresponding optical conversion efficiency of 9.3% and the pulse width of 33 ns. The energy of a single pulse and corresponding peak power are estimated to be 91.3 μJ and 2.77 kW, respectively. The rate equations are also numerically solved by introducing the nonlinear loss resulting from generation of second-harmonic wave.  相似文献   

4.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

5.
High-power continuous wave green radiation has been generated by means of type-II phase-matched frequency doubling in a KTP crystal located in a simple linear cavity incorporating a diode side-pumped Nd:YAG laser module. The cavity was designed to make the fundamental beam radius at the KTP crystal smaller than that at the gain medium, as is required for obtaining large mode volume in Nd:YAG crystal and realizing efficient CW intracavity frequency doubling. Output power of 51.2 W is obtained in the experiment with a diode-to-green optical conversion efficiency of 10.3%. The M2-parameters of the laser are measured at different output powers. For the output power of about 47 W, the power fluctuation is measured less than 1%. The experimental results show that the continuous wave green laser system using this simple linear cavity offers good laser performance and output stability.  相似文献   

6.
We report an intracavity frequency-doubled Q-switched self-Raman yellow laser at 587 nm. A composite Nd:YVO4 crystal was utilized as self-Raman gain medium. The maximum average output power of yellow light obtained was 1.5 W at the incident pump power of 30 W and at a repetition rate of 50 kHz, corresponding to the optical conversion efficiency of 5%. The shortest pulse width, the maximum pulse energy and the highest peak power were measured to be 5.8 ns, 46.7 μJ and 5.9 kW, respectively.  相似文献   

7.
Z. C. Wu  W. M. Liu 《Laser Physics》2011,21(12):2049-2052
We report an efficient intracavity second-harmonic generation (SHG) at 1063 nm in a non-linear optical crystal, GdCa4O(BO3)3 (GdCOB), performed with a diode end pumped continuous-wave (CW) Nd:GdVO4 laser. In the case of a laser with an a-cut 0.4 at % Nd:GdVO4 crystal frequency-doubled with a GdCOB crystal cut for Type I frequency doubling. A CW SHG output power of 2.25 W has been obtained using a 15 mm long GCOB crystal. The optical conversion efficiency with respect to the incident pump power was 12.4%.  相似文献   

8.
In the paper, a new way of intracavity frequency-tripled all-solid-state laser to generate continuous wave blue coherent radiation is firstly demonstrated. High-efficiency of continuous wave third harmonic generation using the approach of double-resonance at fundamental frequency and second harmonic is developed by insertion of one wedge prism for the phase control. The maximum output power at the wavelength of 447 nm, which was generated with two long LiB3O4 crystals by noncritical phase matching, is about 1.15 W with a beam quality factor of M2 of 1.05. From the experimental results, the generation of continuous wave blue light using this way with higher conversion efficiency can be achieved.  相似文献   

9.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

10.
We report an efficient intracavity second-harmonic generation (SHG) at 1066 nm in a non-linear optical crystal, GdCa4O(BO3)3 (GdCOB), performed with a diode end pumped continuous-wave (CW) Nd:LuVO4 laser. In the case of a laser with a Nd:LuVO4 crystal frequency-doubled with a GdCOB crystal cut for type I frequency doubling. A CW SHG output power of 5.18 W has been obtained using a 10 mm long GCOB crystal. The optical conversion efficiency with respect to the incident pump power was 28.5%.  相似文献   

11.
We report on fundamental and intracavity frequency-doubled emission in a miniature Nd:YVO4 (3×3×1 mm) laser. A maximum slope efficiency of ηs=58.6%, with optical efficiency of η0=53.0% at 780 mW pump power was realized in a TEM00 output beam. To obtain the optimum pump-beam focusing conditions we applied a new formalism in which the pump-beam propagation in the active medium was described by its M2 factor. A good agreement between theoretical predictions and experimental results was observed. In second-harmonic regime, obtained by a KTP crystal, 230 mW green power that corresponds to 54% nonlinear conversion efficiency was reached.  相似文献   

12.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

13.
We report a stable high power and high beam quality diode-side-pumped CW green laser from intracavity frequency doubled Nd:YAG laser with LBO crystal. By using a advanced resonator, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously, which are favorable for high power and high beam quality CW green laser generation. The green laser delivered a maximum 532 nm output power of 40 W. The corresponding optical-to-optical conversion efficiency and electrical-to-optical conversion efficiency were 8.6% and 5.0%, respectively. Under 532 nm output power of 34 W, the beam quality factor was measured to be 1.6.  相似文献   

14.
高效全固体脉冲蓝光系统实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用半导体抽运的Q-YLF倍频激光器抽运钛宝石产生830nm的纳秒红外光,再用LBO晶体对该光 产生二次谐波得到415nm的脉冲蓝光.用3W的YLF抽运时可产生960mW基波光,效率达32%;经 倍频后输出285mW的蓝光,倍频效率可达322%.对影响倍频效率的主要因素如基波光源腔型 设计、聚焦效果、脉冲宽度等作了较详细的研究. 关键词: 全固体 倍频 蓝光  相似文献   

15.
报道了LD侧面泵浦Nd∶YAG/S-KTP腔内倍频高功率660nm连续红光激光器。泵浦组件(呈三角形等间距分布)由9个20W的激光二极管组成,最大泵浦功率为180W。通过对谐振腔参数进行优化设计,用LD连续抽运3mm×65mm Nd∶YAG激光棒时,获得了波长为1319nm的基频光振荡。利用S-KTP II类临界相位匹配腔内倍频技术,当泵浦电流为22A时,获得了6.8W的连续红光激光输出,光-光转换效率为4.3%。  相似文献   

16.
A laser diode end-pumped 10 at.% doped Yb:YAG microchip crystal intracavity frequency doubled all solid-stated green laser is reported in this paper. Using one plano-concave resonator, with the pump power of 1.2 W, 44.2 mW TEM00 continuous wave (CW) laser at 525 nm was obtained, the optical conversion efficiency was about 3.7%. When a Cr:YAG crystal with initial transmission of 95.5% inserted in the resonator, the maximum output power of 6.4 mW, pulse duration width of 49.1 ns, pulse repetition rate of 2.45 kHz, and peak power of 53.1 W at 515 nm were achieved when the pump power was 1.2 W. The wavelength changed from 525 nm to 515 nm and the threshold was only 725 mW.  相似文献   

17.
A design of LD-pumped Nd:YVO4 laser that generates simultaneous laser action at wavelengths 1064 and 1342 nm by optimizing film design is presented. An optimized continuous-wave (cw) yellow laser at 593.5 nm in room temperature is obtained for the first time. Using type-I critical phase-matching (CPM)LBO crystal, a yellow laser at 593.5 nm is obtained by 1064 and 1342 nm intracavity sum-frequency mixing. The maximum laser output power of 85 mW is obtained when an incident pump laser of 1.8 W is used. The optical-to-optical conversion is up to 4.7%, and the power stability in 24 h is better than ±2.8%.  相似文献   

18.
 An intracavity frequency-doubled 10%Nd : LaSc3(BO3)4 (Nd : LSB) laser was investigated in different resonator configurations and in different operation modes under continuous wave (cw) and quasi-cw laser-diode pumping. With a Cr4+ : YAG passive modulator and a KTP crystal the second-harmonic output power at 531 nm amounted to 190 mW in Q-switched TEM00 mode at 750 mW of pump power. In a sandwich resonator, when all the optical elements were in direct contact with each other, 0.8 W of green output power was obtained in cw mode under 2.7 W of pump power with a slope efficiency of 44%. In the same setup under fiber-coupled diode-laser array pumping (5.6 W of incident power), 1.2 W of green output power was achieved in cw mode and 1.4 W in quasi-cw mode. Received: 30 April 1996/Revised version: 1 July 1996  相似文献   

19.
A high power dynamic fundamental mode Nd:YAG laser is experimentally demonstrated with a stagger-pumped laser module and a V-shaped resonator. The rod is pumped symmetrically by staggered bar modules. And dynamic fundamental mode is achieved under different pump levels. The maximal continuous wave (CW) output of 124 W (M2=1.4) is achieved with a dual rod. Average output of 112 W, pulse width of 120 ns, pulse energy of 11.2 mJ and peak power of 93 kW are obtained in Q-switched operation of 10 kHz.  相似文献   

20.
A LD end-pumped acoustic-optic Q-switched intracavity frequency-doubled Nd:YVO4 laser was demonstrated. It uses a high gray-tracking resistance KTP crystal as nonlinear optical crystal. The output characteristics of 532 nm green laser using different doping concentrations and cavity configurations were investigated. With the pump power of 27.5 W, a maximum average power of 13 W at 532 nm was achieved at a pulse repetition rate of 80 kHz, corresponding to the optical-to-optical efficiency of 47.3%. The pulse width is 30 ns and single pulse energy is up to 162.5 μJ. This work is a significant exploration for using a high gray-tracking resistance KTP crystal to generate highly efficient frequency-doubled green laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号