首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We present an all solid-state Yb:S-FAP laser system running on the three-level laser transition at 985 nm. The pump source was a high fill-factor laser diode bar, with the output reformatted using a two-mirror beamshaping system to produce a rectangular pump beam that focused to a square spot. A nearly on-axis multipassing system was used to obtain four pump passes through a 1.6 mm Yb:S-FAP laser crystal. Gain-switched three-level laser output was achieved with an efficiency of 4.3% with respect to incident pump power. Electro-optic Q-switching produced 0.12 mJ pulses for a pump pulse energy of 11 mJ. Intra-cavity second-harmonic generation yielded a maximum pulse energy at 492.5 nm of 12 μJ.  相似文献   

2.
We report on gain-saturated operation of the 11.9 nm X-ray lasing line in Ni-like Sn using the grazing-incidence pumping scheme (GRIP). The experiments were done with 2-ps duration pump pulses and energies up to 5 J. Strong gain saturation with multi-microjoule output was measured for the Sn laser at a grazing angle of 30° and a pump pulse energy of 3 J. This was achieved with a 4.5%, 2-ps duration prepulse 2.4 ns ahead of the main pulse and also incident at grazing incidence. Increasing laser output was observed at GRIP angles up to 45°. At this angle, the minimum energy required for saturated lasing was determined as ∼2 J.  相似文献   

3.
An end pumped Nd:YAP laser at 1341 nm is actively mode locked and passively Q-switched. Pumping was done with a pulsed high power laser diode with maximum power 425 W. V3+:YAG with 61% initial transmission served as saturable absorber, and an acousto-optic modulator is used for active mode locking. The output pulse train with 69 ns duration has a total energy of 3.2 mJ with ±4% shot-to-shot fluctuation. The peak output energy of a single mode locked pulse is 0.25 mJ. The pulse duration of a single mode locked pulse is less than 800 ps. The output laser beam is nearly diffraction limited with 1.6 mm diameter, and beam propagation factor M2 about 1.3.  相似文献   

4.
We report a high-power dual-wavelength Yb-doped double-clad fiber laser based on a few-mode fiber Bragg grating (FMFBG). The FMFBG was fabricated by using a piece of fiber in a length of fiber with a cutoff wavelength of 1225 nm, which supported two modes at 1060 nm. The laser was pumped by a fiber pigtailed laser diode working at 915 nm. Single-wavelength, dual-wavelength and triple-wavelength laser oscillations were observed when the fiber laser operated under different low pump powers. However, stable dual-wavelength operation was achieved at higher pump power of 3.9 W and remained unchanged until the output power reached 5.67 W under the maximum available pump power of 10.7 W. The laser wavelengths were centered at 1059.12 and 1060.80 nm with a full-width at half-maximum of 37 and 43 pm, respectively. The signal-to-noise-ratio was greater than 50 dB and the beam quality factor (M2) was about 1.9.  相似文献   

5.
A laser-diode end-pumped acousto-optic (AO) Q-switched Nd:YVO4/KTP red laser by using a plano-concave cavity was demonstrated for the first time. This linear cavity configuration could guarantee not only moderate intracavity focusing on KTP crystal but also good beam quality. Under the absorbed pump power of 14.8 W, the maximum average output power at 671 nm was obtained to be 1.37 W at the repetition frequency of 15 kHz, with the corresponding optical conversion efficiency of 9.3% and the pulse width of 33 ns. The energy of a single pulse and corresponding peak power are estimated to be 91.3 μJ and 2.77 kW, respectively. The rate equations are also numerically solved by introducing the nonlinear loss resulting from generation of second-harmonic wave.  相似文献   

6.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

7.
We report the generation of high-peak power multi-wavelength picosecond laser pulses using optical parametric amplification (OPA) in BBO seeded with pulses generated in a 5-mm length BaWO4 crystal by stimulated Raman scattering of 18-ps laser pulses at 532 nm. The maximum output energy of the amplified first-Stokes component at 559.7 nm was about 1.76 mJ. The corresponding maximum peak power, pulse duration and spectral line width were measured to be 117.3 MW, 15 ps and 18.0 cm−1, respectively. The multi-wavelength picosecond laser pulses were in the visible and near infrared ranges. Using this Raman-seeded OPA technique, the beam quality of the stimulated Raman scattering pulses can be improved.  相似文献   

8.
A high efficiency, high beam quality diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with six amplifier stages is demonstrated. The oscillator with two-rod birefringence compensation was designed as a thermally determined near hemispherical resonator, which presents a pulse energy of 223 mJ with a beam quality value of M2 = 1.29 at a repetition rate of 108 Hz. The MOPA system delivers a pulse energy of 5.1 J with a pulse width of 230 μs, a M2 factor of 3.6 and an optical-to-optical efficiency of 38.5%. To the best of our knowledge, this is the highest pulse energy for a diode-pumped Nd:YAG rod laser operation with a high beam quality and a pulse width of hundreds of microseconds at a repetition rate of over 100 Hz.  相似文献   

9.
Based on the rate equation of Nd3+-doped quasi-three-level lasers, a theoretical model of diode-end-pumped continuous-wave 912 nm Nd:GdVO4 laser is presented. Lasing threshold and slope efficiency considering reabsorption effect are calculated and analyzed. It is found that the output performance of 912 nm laser operating at room temperature is influenced remarkably by the reabsorption loss and spatial distribution of the pump beam and laser beam. In experiments, the output power and average slope efficiency of 912 nm laser were investigated under different conditions. After optimization at the parameters of laser medium, working temperature and spatial distribution of the pump beam, up to 16.2 W continuous-wave 912 nm laser output was obtained at incident pump power of 67.0 W, with an average slope efficiency of 41.7%, to the best of our knowledge, this is the highest output power of diode-pumped 912 nm Nd:GdVO4 laser by far.  相似文献   

10.
We have achieved efficient third-harmonic generation (THG) with an electro-optically Q-switched diode-end-pumped slab laser by cascading second-harmonic and sum-frequency generation in a lithium triborate (LBO) crystal. The high conversion efficiency, short pulse length and high pulse energy is the characteristic of the output 355 nm light. An average power of 11.1 W at a repetition rate of 10 kHz was achieved. The pulse energy is 1.1 mJ and the pulse length is 5 ns. The peak power of pulse is 0.22 MW. The conversion efficiency from 1064 nm to 355 nm reached 44.4% which is to our knowledge the highest conversion efficiency. Furthermore, the 355 nm light is near TEM00 mode. The beam quality is M2 < 1.5. In this paper, the experimental setup, results and the factors which can affect the conversion efficiency are discussed.  相似文献   

11.
A strong optogalvanic effect has been observed in a negative glow of a miniature neon discharge lamp using tunable pulse dye laser pumped by a copper vapor laser. A comparative study on temporal evolution of optogalvanic signal in a positive and negative dynamic resistance region of the discharge is described. Dye laser beam was tuned to various neon transitions 1si → 2pj (Paschen notations) within 570-617 nm wavelength range. Anomalous behavior of optogalvanic signal was observed at 588.2 nm for (1s5 → 2p2) neon transition at low discharge current (<220 μA). This anomalous behavior is the attributes of damped oscillations of optogalvanic signal that correlate with negative dynamic resistance (dV/di < 0) of the discharge. Penning ionization at low discharge current and small energy mismatch is assumed to be the main cause of the negative dynamic resistance. Penning ionization process has been explained by resonantly ionizing energy transfer via collisions between neon buffer gas atoms in the lowest metastable state (1s5) and electrode sputtered atoms in ground state using their partial energy level diagram.  相似文献   

12.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr4+:YAG laser and its efficient intracavity frequency-doubling to 456 nm deep-blue laser were demonstrated in this paper. Using a simple V-type laser cavity, pulsed 912 nm laser characteristics were investigated with two kinds of Cr4+:YAG crystal as the saturable absorbers, which have the different initial transmissivity (TU) of 95% and 90% at 912 nm. When the TU = 95% Cr4+:YAG was used, as much as an average output power of 2.8 W 912 nm laser was achieved at an absorbed pump power of 34.0 W, and the pulse width and the repetition rate were ∼ 40.5 ns and ∼ 76.6 kHz, respectively. To the best of our knowledge, this is the highest average output power of diode-pumped passively Q-switched Nd3+-doped quasi-three-level laser. Employing a BiBO as the frequency-doubling crystal, 456 nm pulsed deep-blue laser was obtained with a maximum average output power of 1.2 W at a repetition rate ∼ 42.7 kHz.  相似文献   

13.
The laser oscillating at a weak line of Nd:YAP around 1.3-μm realized though selecting polarization is described. The energy level transitions of Nd:YAP crystal and their polarization properties were analyzed. A thin-film polarizer was adopted to restrain the oscillating of the c-axis strong polarized spectral lines and a reasonable transmittance was designed to suppress the a-axis polarized 1064 nm strong line lasing, and then a-axis polarized 1339 nm pulse laser of 336 mJ for free running mode and 64 mJ for electro-optic Q-switched mode were successfully achieved, corresponding to pulse widths of 180 μs and 35 ns, respectively. This method of selecting polarization to realize weak line oscillating is significant for anisotropic laser crystals doped with Nd3+ ions to select the particular transitions.  相似文献   

14.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

15.
Interaction of an Nd:YAG laser, operating at 1064 or 532 nm wavelength and pulse duration of 40 ps, with titanium implant was studied. Surface damage thresholds were estimated to 0.9 and 0.6 J/cm2 at wavelengths 1064 and 532 nm, respectively. The titanium implant surface modification was studied by the laser beam of energy density of 4.0 and 23.8 J/cm2 (at 1064 nm) and 13.6 J/cm2 (at 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium/implant surface morphological changes were observed: (i) both laser wavelengths cause damage of the titanium in the central zone of the irradiated area, (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with the 1064 nm laser wavelength and (iii) appearance of wave-like microstructures with the 532 nm wavelength. Generally, both laser wavelengths and the corresponding laser energy densities can efficiently enhance the titanium/implant roughness. This implant roughness is expected to improve its bio-integration. The process of the laser interaction with titanium implant was accompanied by formation of plasma.  相似文献   

16.
Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.  相似文献   

17.
By exploiting the intracavity frequency conversion configuration, a diode end-pumped acousto-optic (AO) Q-switched Nd:YVO4 355 nm laser was demonstrated in this paper. Two LBO crystals were inserted in the cavity to realize the frequency tripling operation, a cascade of the second harmonic generation (SHG) and sum frequency mixing (SFM). Under the absorbed pump power of 13 W, the maximum average output power at 355 nm was obtained to be 1.32 W at the repetition frequency of 17 kHz, with the optical-to-optical conversion efficiency of 10.2%. The corresponding pulse width was 10.2 ns, with the energy of a single pulse and corresponding peak power estimated to be 77.6 μJ and 7.61 kW, respectively.  相似文献   

18.
Grazing-incidence pumped Ni-like Sn X-ray laser media at 11.9 nm (4d-4p, J = 0-1) is modelled using code EHYBRID and a post-processor code. The required atomic data are obtained using the Cowan code. In this study the pre-formed plasma is pumped on longitudinal direction with a grazing angle. Detailed simulations were performed to optimize the driving laser configurations. Relatively high gain is produced for the Ni-like Sn X-ray laser at 11.9 nm with long pre-pulse and short main pulse drive energy of only 100 mJ on 4 mm slab targets. Using low intensity pre-pulse prior to long pulse decreases the electron density gradient. X-ray resonance lines between 13 and 25 Å emitted from tin plasma have been simulated using post-processor coupled with EHYBRID. The ratio of these resonance lines can be used to measure electron temperature of the laser produced Sn plasma.  相似文献   

19.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

20.
A high repetition rate mid-infrared singly resonant optical parametric oscillator (OPO) using MgO-doped multi-grating periodically poled LiNbO3 (MgO:PPLN) is demonstrated. A 1064 nm Q-switched Nd:YVO4 laser at 10 kHz repetition rate and pulse width of 17.8 ns was used to pump the OPO. The period of the quasi-phase matched (QPM) grating in the multi-grating MgO:PPLN chip varied from 25.5 to 31.5 μm in steps of 0.5 μm. This corresponds to the generation of a signal beam from 1.37 to 1.64 μm and an idler beam from 3.0 to 4.8 μm, respectively. A maximum signal power of 250 mW and idler power of 140 mW has been obtained with an input pump beam of power 1.92 W, for a grating period of 30.5 μm. A maximum optic-optic conversion efficiency of 20% and 7.4% in the idler has been observed. It has been observed that the output power increases as the period of the grating increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号