首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence and general properties of different kinds of defect vector gap solitons in one dimensional optically induced photonic defect lattice with focusing saturable nonlinearity in photorefractive crystal are analyzed. The defect is well localized in a single site with two existence forms, namely repulsive and attractive defect. Propagation constants of two beams that compose defect vector gap solitons could be from same gap or from different gaps. We show that some kinds of unstable scalar defect gap solitons could be stabilized by their corresponding vector cases.  相似文献   

2.
Spatial solitons permit optical waveguiding. This holds true for the soliton write beam (i.e. the driving laser beam), as well as for additional probe beams, which may carry optically encoded information. This feature of spatial solitons is of significant interest for applications in optical telecommunication. We present systematic experimental investigations on single and multiple spatial solitons in the infrared spectral regime (i.e. around optical telecommunication wavelengths), applied as controllable all-optical devices. In particular, we present the implementations of a Y-coupler as an optical signal divider, a switchable Y-coupler as an optical add multiplexer, and a novel design for a 1 × 3 optical beam switch, i.e. applied as a router for infrared signal beams. We report large waveguiding efficiencies up to 40% and transmission rates of 90 Tbit/s in our setups. The presented experimental data are confirmed by numerical simulations.  相似文献   

3.
We demonstrate the existence of higher-order solitons occurring at an interface separating two one-dimensional (1D) Bessel optical lattices with different orders or modulation depths in a defocusing medium. We show that, in contrast to homogeneous waveguides where higher-order solitons are always unstable, the Bessel lattices with an interface support branches of higher-order structures bifurcating from the corresponding linear modes. The profiles of solitons depend remarkably on the lattice parameters and the stability can be enhanced by increasing the lattice depth and selecting higher-order lattices. We also reveal that the interface model with defocusing saturable Kerr nonlinearity can support stable multi-peaked solitons. The uncovered phenomena may open a new way for soliton control and manipulation.  相似文献   

4.
Dipole and quadrupole solitons in a two-dimensional optically induced defocusing photonic lattice are theoretically predicted and experimentally observed. It is shown that in-phase nearest-neighbor and out-of-phase next-nearest-neighbor dipoles exist and can be stable in the intermediate intensity regime. There are also different types of dipoles that are always unstable. In-phase nearest-neighbor quadrupoles are also numerically obtained, and may also be linearly stable. Out-of-phase, nearest-neighbor quadrupoles are found to be typically unstable. These numerical results are found to be aligned with the main predictions obtained analytically in the discrete nonlinear Schrödinger model. Finally, experimental results are presented for both dipole and quadrupole structures, indicating that self-trapping of such structures in the defocusing lattice can be realized for the length of the nonlinear crystal (10 mm).  相似文献   

5.
We address the dynamics of solitons in the optical lattices with periodic modulation of the nonlinearity coefficient. Based on the quasi-particle approach, the properties of fundamental soliton localized in optical lattices are theoretically analyzed and shown its potential application for controllable soliton switching. Moreover, the phenomena of multi-soliton splitting and the single-soliton constituent trapping in the optical lattices are illustrated and discussed.  相似文献   

6.
We analytically address different types of optical modes in a coupler composed by two nonlinear optical waveguides. It is shown that the coupler not only supports symmetry-preserving modes but also symmetry-breaking modes. In addition, the properties on the existence and bifurcation of those modes are analyzed in detail.  相似文献   

7.
We study the properties of one dimension incoherent accessible solitons in strongly nonlocal media with noninstantaneous Kerr nonlinearity. Following the coherent density theory, we obtain an exact solution of such incoherent solitons. The spatial width of the incoherent solitons is related to the incoherent angular power spectrum θ0 as well as the incident power. The evolution properties of the intensity profile and the coherence characteristics are also discussed in detail when the solitons undergo periodic harmonic oscillation.  相似文献   

8.
9.
Zhiyong Xu 《Optics Communications》2008,281(22):5605-5609
We address surface soliton complexes formed at the edge of annular guiding structures containing several concentric rings. Such soliton complexes feature a π-phase difference between neighboring spots. It is shown that the multipole-mode solitons can rotate steadily upon propagation, and the existence domain is strongly affected by the rotation frequency. The rotation may enhance the stabilization of surface multipole-mode solitons.  相似文献   

10.
We provide exact periodic and soliton solutions of optical domain-wall structures that arise due to modulation instability in a nonlinear medium with normal dispersion.  相似文献   

11.
This paper predicts that gray spatial solitons can exist in biased two-photon photovoltaic photorefractive crystals. Under appropriate conditions and in the steady state, the gray spatial solitons solution of the optical evolution equation is obtained. The properties associated with these solitons, such as their intensity profile, intensity full width at half-maximum, width, transverse velocity and phase distribution, are discussed as functions of their normalized intensity and degree of “grayness”. Relevant examples are provided.  相似文献   

12.
We study numerically the formation and interactions of incoherent white-light solitons in a nonlinear media with logarithmic saturable nonlinearity based on the coherent density approach. We find that not only the formation but also the interactions of incoherent white-light solitons are fundamentally a collective effect, where all the frequencies participate in the process, and self-adjust their respective contributions to the formation and interactions. We find that the interactions of incoherent white-light solitons in logarithmic media are always attractive.  相似文献   

13.
We present a generalized soliton theory based on the one-dimensional generalized nonlinear Schroedinger equation,from which one can easily obtain the bright, dark, and grey soliton waveforms, and their existence curves. We show that the forming conditions of spatial solitons are directly dependent on the relationship between the index perturbation and the intensity, no matter whether the index perturbation is positive or negative. Some relevant examples are presented when the solitons are supported by the photoisomerization nonlinearity.  相似文献   

14.
By considering the effect of background light and diffusion, the self-deflection process of partially spatially incoherent (PSIC) beams and photovoltaic (PV) solitons in open-circuit PV photorefractive crystals has been investigated by employing numerical method and the perturbation technique, respectively. The results from the two approaches are in good agreement: the center of PSIC PV solitons moves on a parabolic trajectory, which is similar to those of coherent solitons. In addition, we also discuss that the dependence of self-deflection effect on the coherent parameter θ0 and find it is slight relative to θ0 for quasi-soliton but decreases monotonously with θ0 for PSIC beam.  相似文献   

15.
We show that the time-dependent nonlinear wave equation in closed-circuit photovoltaic media can exhibit quasi-steady-state and steady-state spatial solitons. We demonstrate that the formation time of open-circuit quasi-steady-state and open-circuit steady-state dark solitons decreases with an increase in the intensity ratio of the soliton, which is the ratio between the soliton peak intensity and the dark irradiance. We find that for the time-dependent nonlinear wave equation that exhibits only an open-circuit steady-state dark soliton, changing the electric current density J0 does not generate quasi-steady-state dark solitons and affects the formation time of steady-state dark solitons and that for the time-dependent nonlinear wave equation that exhibits an open-circuit quasi-steady-state dark soliton, changing J0 gives rise to three different time evolution regimes of the full width half maximum of the soliton’s intensity. The first regime shows that the formation time of steady-state dark solitons increases with J0 whereas the formation time of quasi-steady-state dark solitons is independent of J0. The second regime shows that the formation time of steady-state dark solitons decreases with an increases in J0 and the formation time of quasi-steady-state dark solitons increases with J0. The third regime shows that changing J0 enables only steady-state dark solitons in the time-dependent nonlinear wave equation, of which the formation time increases with J0.  相似文献   

16.
We carry out a theoretical investigation of the properties of waveguides induced by photorefractive one-dimensional steady-state gray spatial solitons (i.e., screening solitons, photovoltaic solitons, and screening-photovoltaic solitons). We demonstrate that waveguides induced by photorefractive steady-state gray spatial solitons are only a single guided mode for both all soliton graynesses and all values of ρ, where ρ is the ratio between the soliton peak intensity and the dark irradiance, and moreover, waveguides induced by gray photovoltaic solitons for closed-circuit condition are also only a single guided mode for all electric current densities. We find that the confined energy near the center of a photorefractive steady-state gray spatial soliton increases with ρ and decreases with an increase in the soliton grayness. We also find that the confined energy near the center of a gray photovoltaic soliton for closed-circuit condition increases with the electric current density. On the other hand, waveguides induced by gray screening-photovoltaic solitons are gray screening soliton-induced waveguides when the bulk photovoltaic effect is neglectable and are gray photovoltaic soliton-induced waveguides when the external bias field is absent.  相似文献   

17.
By extending the (1 + 1)-dimensional [(1 + 1)-D] perturbation method suggested by Ouyang et al. [S. Ouyang, Q. Guo, W. Hu, Phys. Rev. E. 74 (2006) 036622] to the (1 + 2)-D case, we obtain a fundamental soliton solution to the (1 + 2)-D nonlocal nonlinear Schrödinger equation (NNLSE) with a Gaussian-type response function for the sub-strongly nonlocal case. Numerical simulations show that the soliton solution obtained in this paper can describe the soliton states in both the sub-strongly nonlocal case and the strongly nonlocal case. It is found that the phase constant and the power of the (1 + 2)-D strongly nonlocal spatial optical soliton with a Gaussian-type response function are both in inverse proportion to the 4th power of its beam width.  相似文献   

18.
In this paper, we present the (1 + 1)-dimensional inhomogeneous nonlinear Schrödinger (NLS) equation, which describes propagation of optical waves in nonlinear optical systems exhibiting spatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. Exact multi-soliton solutions are presented by the simple Darboux transformation based on the Lax Pair, and the exact one- and two-soliton solutions in explicit forms are also generated. As two examples, we consider two nonlinear optical systems. In the systems, based on the exact solutions, a series of interesting properties of optical waves are displayed.  相似文献   

19.
20.
We illustrate our experimental observation of coexisting the controllable spatial splitting and intensity suppression of four-wave mixing (FWM) beam in a V-type three-level atomic system. The peak number and separation distance of the FWM beam are controlled by the intensities and frequencies of the laser beams, as well as atomic density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号