首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the fact that a hard aperture function can be expanded into a finite sum of complex Gaussian functions, the approximate analytical expression for the output field distribution of a rectangular flattened Gaussian beam passing through a circular apertured and misaligned paraxial ABCD system is derived. The result brings more convenient for studying its propagation than the usual way by using diffraction integral directly. Some numerical simulations are also given for illustrating the propagation properties of a rectangular flattened Gaussian beam through a circular apertured and misaligned optical system.  相似文献   

2.
Huilian Jiang  Daomu Zhao   《Optik》2007,118(4):181-186
An approximate analytical propagation formula of the elliptical Gaussian beams through a paraxial ABCD optical system with a circular aperture is obtained on the basis of the expansion of a hard-edged aperture into a finite sum of complex Gaussian functions. And the parameter characteristics of the truncated beams including the beam propagation factor and the kurtosis parameter are also studied in detail by using the second-order-moments method.  相似文献   

3.
Daomu Zhao  Haidan Mao  Dong Sun  Shaomin Wang 《Optik》2005,116(5):211-218
Based on the treatment that a rectangular function can be expanded as an approximate sum of complex Gaussian functions with finite numbers, the analytical expression of the Wigner distribution function for a Gaussian beam passing through a paraxial ABCD optical system with hard-edged aperture is obtained. By numerical simulation, it is shown that the effect of the aperture on the Wigner distribution function is prominent. By comparing the analytical results with the numerical integral results, it is shown that this method of expanding hard-edged aperture into Gaussian functions with finite numbers is proper and ascendant. This method could be extended to study the Wigner distribution functions of other light beams passing through a paraxial ABCD optical system with hard-edged aperture.  相似文献   

4.
Based on the relations between Laguerre–Gaussian (LG) and Hermite–Gaussian (HG) modes and by introduced the complex Gaussian expansion method for two dimensional rectangular aperture, the approximate analytical propagation expressions of the rotational symmetrical LG beams along with their even and odd modes through a paraxial ABCD optical system with rectangular hard-edged aperture are derived. As special cases of the results, the corresponding closed-forms of the circular aperture diffracted LG beams and non-truncated LG beams are also given. Numerical examples are given to prove the validity of this approximate analytical method and illustrate the propagation properties of the rectangular hard-edged aperture diffracted LG beams.  相似文献   

5.
By means of Collins diffraction integral formula in the paraxial approximation and based on the fact that a hard aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical expression for linearly polarized Bessel-Gaussian beams passing through a paraxial ABCD optical system with an annular aperture has been derived. The results provide more convenient for studying their propagation and transformation than the usual way by using diffraction integral directly. By using the analytical expression and the diffraction integral formula some numerical simulations are done to illustrate for the propagation characteristics of a linearly polarized Bessel-Gaussian beam through an optical system with an annular aperture.  相似文献   

6.
A new form of laser beams called four-petal Gaussian beams is introduced. Based on the Collins integral, two kinds of analytical propagation expressions for this new kind of beams through a paraxial ABCD optical system are derived. The propagation properties of the four-petal Gaussian beams are studied and illustrated with numerical examples. At the source plane the beam has four-petals; the space among the petals is determined by the beam order. In the far field the beam evolves into a number of mirror symmetric petals and the petals of higher order beams can be equally spaced.  相似文献   

7.
On the basis of the expansion of the hard aperture function into a finite sum of complex Gaussian functions, the approximate analytical expression of Laguerre-Gaussian beams passing through an annular apertured paraxial ABCD optical system is derived. Meanwhile, the corresponding closed-forms for the unapertured or circular apertured or circular black screen cases have also been given. Numerical examples are given to illustrate the propagation characteristics of Laguerre-Gaussian beams.  相似文献   

8.
Pan  L.    B. 《Optical and Quantum Electronics》2003,35(2):129-138
By using the beam coherence-polarization (BCP) matrix approach, analytical propagation equations of partially polarized Gaussian Schell-model (PGSM) beams through an axis-unsymmetric paraxial optical ABCD system are derived, which enable us to study the propagation-induced polarization changes and irradiance distributions at any propagation distance of PGSM beams through axis-unsymmetric systems within the framework of the paraxial approximation. Detailed numerical results for a PGSM beam passing through a bifocal lens are presented to illustrate the propagation properties of PGSM beams. A comparison with the previous work is also made.  相似文献   

9.
周国泉 《中国物理 B》2011,20(11):114103-114103
Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical system are derived. By replacing the parameters in the expressions of the kurtosis parameters of the SLG01 beam, the kurtosis parameters of the SLG10 and SLG11 beams through a paraxial and real ABCD optical system can be easily obtained. The kurtosis parameters of an SLG01 beam through a paraxial and real ABCD optical system depend on two ratios. One is the ratio of the transfer matrix element B to the product of the transfer matrix element A and the diffraction-free range of the super-Lorentzian part. The other is the ratio of the width parameter of the super-Lorentzian part to the waist of the Gaussian part. As a numerical example, the properties of the kurtosis parameters of an SLG01 beam propagating in free space are illustrated. The influences of different parameters on the kurtosis parameters of an SLG01 beam are analysed in detail.  相似文献   

10.
周国泉 《物理学报》2009,58(9):6185-6191
基于广义衍射积分公式和光阑函数的复高斯展开,导出了一洛伦兹光束经一个带圆形光阑失调傍轴光学系统的近似解析传输公式.作为一般公式的特例,还给出了洛伦兹光束经一无光阑失调傍轴光学系统的解析传输式.作为数值计算的例子,运用所得到的公式分析了洛伦兹光束经带光阑失调薄透镜的传输特性.结果表明:不同强度的衍射即圆形光阑半径的大小明显影响衍射光束的归一化强度分布及其传输变化规律. 关键词: 洛伦兹光束 失调傍轴光学系统 光束传输  相似文献   

11.
Gaofeng Wu  Jun Chen 《Optics Communications》2011,284(18):4129-13325
By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.  相似文献   

12.
《Physics letters. A》2006,360(2):394-399
Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a misaligned paraxial ABCD optical system in the cylindrical coordinate system, analytical formula for a circular flattened Gaussian beam propagating through such optical system is derived. Furthermore, an approximate analytical formula is derived for a circular flattened Gaussian beam propagating through an apertured misaligned ABCD optical system by expanding the hard aperture function as a finite sum of complex Gaussian functions. Numerical examples are given.  相似文献   

13.
Based on the generalized diffraction integral formula for treating the propagation of a laser beam through a paraxial misaligned optical system in the cylindrical coordinate system, we obtain an analytical formula for a hollow Gaussian beam passing through a paraxial misaligned optical system. Furthermore, we also obtain the approximate analytical formula for a hollow Gaussian beam passing through a paraxial circularly apertured misaligned optical system by expanding the hard aperture function into a finite sum of complex Gaussian functions. As a numerical example, the propagation properties a hollow Gaussian beam through a misaligned thin lens are studied numerically.  相似文献   

14.
Xiaoling Ji  Baida Lü 《Optik》2005,116(5):219-225
A matrix formulation is presented, which enables us to study the propagation of axis-symmetric beams through a paraxial optical ABCD system containing hard-edged aperture. Numerical calculation results of super-Gaussian beams passing through a multi-aperture-lens system are given to illustrate the advantage of the method. A comparison of the matrix formulation, complex Gaussian expansion and direct numerical integration of the Collins formula is made, where the propagation of apertured Laguerre-Gaussian beams is chosen as an illustrative example. It is shown that the matrix formulation provides satisfactory results in both Fraunhofer and Fresnel regions, and reduces the computational time greatly in comparison with the direct integration. However, this method is suited only to axis-symmetric optical beams and systems. By using the complex Gaussian expansion discrepancies exist in the near zone closer to the aperture, but usually its computational efficiency is higher than the matrix formulation.  相似文献   

15.
The propagation of flat-topped beams passing through paraxial ABCD optical system is investigated based on the propagation formulas of Gaussian beam. The focal shift of focused coherent flat-topped beam is also studied in detail. Analytical expressions of the M2 factor and the far-field intensity distribution for flat-topped beams are derived on the basis of second-order moments.  相似文献   

16.
By introducing a hard aperture function into a finite sum of complex Gaussian functions, an approximate analytical expression for the two-dimensional off-axial Hermite-cosh-Gaussian beams passing through a rectangular apertured and misaligned paraxially ABCD optical system has been derived. The results provide more convenience for studying their propagation and transformation than the usual way by using diffraction integral directly. Some numerical simulations are also illustrated for the propagation characteristics of a two-dimensional off-axial Hermite-cosh-Gaussian beam through a rectangular apertured ABCD optical system.  相似文献   

17.
Propagation of a flat-topped beam of circular or non-circular (rectangular or elliptical) symmetry through an apertured optical system is investigated. By expanding the hard aperture function as a finite sum of complex Gaussian functions, some approximate analytical propagation formulas are derived for a flat-topped beam of circular or non-circular (rectangular or elliptical) symmetry propagating through an apertured paraxial general astigmatic (GA) optical system or an apertured paraxial misaligned stigmatic (ST) optical system. The derived formulas are very fast to compute. The results obtained by using the approximate analytical expressions are in a good agreement with those obtained by direct numerical integration. The present analytical formulas provide a convenient and effective way for studying the propagation and transformation of a circular or non-circular flat-topped beam through an apertured general optical system.  相似文献   

18.
Based on the Collins diffraction integral formula, an analytical expression of a general four-petal Gaussian vortex beam passing through a paraxial ABCD optical system is derived by means of the mathematical technique. As a numerical example, the normalized intensity distribution of a four-petal Gaussian vortex beam propagating in free space is graphically demonstrated. The influences of beam order and topological charge on the normalized intensity distribution are discussed in detail. This research is useful to the optical trapping, optical communications, and beam splitting techniques, etc.  相似文献   

19.
Using Collins formula and the expansion of Mathieu beams in terms of Bessel beams we derive the exact propagation equations of Mathieu-Gauss beams through an apertured paraxial ABCD optical system. A comparison between the exact propagation equations and the approximated ones, which are derived by expanding the circ function into a finite sum of Gaussian functions, is presented. The propagation characteristics of zeroth-order Mathieu-Gauss beams in (y-z) and (x-z) planes are analyzed with detailed numerical calculations. It is found that the profile of the propagated Mathieu-Gauss beam is similar to that of Bessel-Gauss beam. Furthermore, the focalization of the Mathieu-Gauss beams through a thin lens is illustrated and analyzed with numerical results.  相似文献   

20.
In this paper, a more generalized beam containing an elegant Hermite Gaussian beam and a cosine Gaussian beam, which is called elegant Hermite cosine Gaussian (EHcoG) beam, is introduced and studied. The propagation properties of the EHcoG laser beams through a first-order paraxial optical system are demonstrated analytically and numerically. The recurrence propagation equations of the EHcoG beams through a first-order paraxial optical system with and without aperture are derived, from which the analytical propagation expression for EHcoG beams of any order can be obtained by means of the recursive procedures. The validity of the analytical results is confirmed by the numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号