首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the statistical properties of thermal radiation in a Kerr nonlinear blackbody in which bare photons with opposite wave vectors and helities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. This paper investigates the statistical properties of the photon blackbody field by using the second-order correlation function, the phase space distribution function, the photon number distribution and the nonclassical depth. The numerical computation and a discussion of the results are present.  相似文献   

2.
We introduce a modified density of modes to investigate the spontaneous emission spectrum of a three-level V-type atom in photonic crystal using Laplace transform. The atom’s steady state behavior of spontaneous emission is treated for different locations of the upper band-edge frequency. Furthermore; the influence of quantum interference between the two decay channels on spontaneous emission is discussed.  相似文献   

3.
Bing Zhang  Xiangqian Jiang 《Optik》2011,122(14):1262-1266
We study the coherent control of spontaneous emission of a double-driven four-level atom embedded in photonic crystals. Combined effect of different relative locations between the upper band edge and the two upper levels and the phase of microwave coupling field is discussed. It is shown that quantum interference effect such as laser-induced dark line depends strongly on the phase of microwave field.  相似文献   

4.
In this work we numerically compare the interaction of optical vortices (OVs) in self-defocusing and self-focusing Kerr nonlinear media. We find that the basic scenarios (attraction/repulsion, translation/rotation vs. background) in the interaction of two and three vortices with equal and alternative topological charges (TCs) are the same in both media. However, the vortex dynamics under self-focusing conditions is influenced by the reshaping of the surrounding part of the background. Square structure of OVs with alternating TCs is found to be stable with respect to the vortex positions in self-focusing media. This elementary cell is successfully generalized in a large square array of OVs with alternative TCs which brings ordering in the multiple filamentation of the background beam in self-focusing conditions.  相似文献   

5.
A semi-classical theory of two intense optical fields interacting with a third-order non-linear medium composed of a three-level cascade atomic system is presented. It is predicted that non-linear atom-field interactions allow the formation of two-frequency bright, dark and grey spatial solitons. We demonstrate through numerical simulations and analytic stability analysis that the bright and grey solitons are stable.  相似文献   

6.
The frequency spectrum of the fluorescence must be reduced when studying interactions between atoms and parametric fluorescence using the photon counting method since photon counting does not distinguish the light frequency. An interference filter and etalons successfully reduced the frequency spectrum of the parametric fluorescence from 6.6 THz to 1.7 GHz. The parametric fluorescence after frequency filtering showed the non-classical feature violating a Cauchy-Schwartz inequality for the intensity correlation function. We used slow light propagation with Rb gas to demonstrate that the obtained light source interacts with the atoms.  相似文献   

7.
We have demonstrated the experimental realization of a single-beam mini magneto-optical trap of 87Rb atoms, originally designed for a cold atom-clock with coherent population trapping (CPT). Only one beam is used as cooling, trapping and repumping beams rather than the three pairs of orthogonal beams of the standard magneto-optical trap. The core optics, which consists of a modified pyramidal funnel type mirror, a quarter-wave plate and a retroreflect mirror, is installed inside a mini titanium cubic chamber. The vacuum system, rubidium source, magnetic field coils and beam expander are designed in a compact geometry. As many as 1.1 × 107 rubidium atoms are cooled and trapped, and thus the mini trap is ready for the implementation of a novel compact coherent population trapping cold atom-clock.  相似文献   

8.
Third order nonlinear optical susceptibility (χ〈3〉) of metallophthalocyanines (MPcs, where M = Co, Cu, Zn, Mg) thin films and solutions was investigated by standard backward degenerate four wave mixing (DFWM) method at 532 nm. Third harmonic generation (THG) measurement at 1064 nm performed on MPcs thin films is also discussed. MPcs thin films were grown by conventional thermal evaporation in high vacuum and solution were dissolved in tetrahydrofuran (THF), in which the studied materials are soluble. In the case of microscopic nonlinearity, we calculated the second order hyperpolarizability (γ) for MPcs solutions. We found that the χ〈3〉 and the γ values are affected by the nature of the central metal atom. We also found that the value is larger than that measured via THG experiment. The variation in χ〈3〉 values occurs due to the different resonance contributions.  相似文献   

9.
We prove that the revival-collapse phenomenon occurring in the atomic inversion of the two-photon Jaynes-Cummings model, when the mode is initially prepared in the coherent state and the atom is in the excited state, can be obtained from the evolution of the quadrature squeezing of the four-photon Jaynes-Cummings model.  相似文献   

10.
As an important parameter, von Neumann entropy has been used to characterize the entanglement between atom and light field. We discussed the entanglement and nonclassicality evolution of an atom in a squeezed vacuum—a typical nonclassical field, and compare it with that of the coherent state. It shows that the atom-field entanglement in squeezed vacuum is much stronger and stabler than that in coherent state, whereas the nonclassicality of the light field depends on its initial status. This investigation is trying to find a new insight into the relation between entanglement of atom-field system and nonclassicality of light fields. The result shows that the entanglement between the atom and the field can be maintained well in the squeezed vacuum and this implies better control of atom and photon mutually.  相似文献   

11.
A theoretical analysis of vectorial three-wave mixing in isotropic Kerr media is presented. The analysis based on the coupled-wave equations describes the amplification of a weak wave by coupling with a strong pump wave phase matched by optically induced change of average refractive index. The phase matching condition for interacting waves with different polarizations is calculated, allowing a large amplification of a weak wave by three-wave mixing in thick Kerr media. The main conclusions of our theoretical analysis are supported by the results of experiments in CS2 liquid medium.  相似文献   

12.
We investigate a coherently prepared cold medium for efficient single-photon inelastic two-wave mixing (ITWM), maximum Fock state entanglement and single photon self-interference. We show the possibility of generating maximally entangled single-photon state, and near 100% conversion efficiency for generating a frequency shifted TWM photon by proper choice of medium length and concentration. In addition, we demonstrate a new type of transparency effect produced by an efficient single photon self-interference, a transparency effect that is very different from the conventional electromagnetically induced transparency (EIT) process.  相似文献   

13.
A driven three-level atom system in free-space is investigated. The quantum entropy between the three-level atom and its spontaneous field is calculated. The entanglement between them and the influence of the classical field Ω on the entanglement are studied. The result indicates that there is a steady entanglement between the three-level atom and its spontaneous field, and they cannot be disentangled even the classical field is very large. In addition, the entanglement of the k photons and q photons is studied, it shows the two field is entangled for short time evolution.  相似文献   

14.
We mix the emission of a femtosecond Ti:sapphire laser with the emission of a continuous wave infrared laser in a beta-barium borate crystal. Green light with a center wavelength of 527 nm and a spectral width of 2.5 nm resulting from sum frequency generation is detected. An intensity study verifies that a nonlinear χ(2) process is at the origin of the green light generation. The experimentally obtained conversion efficiency of 7 × 10−10 is in good agreement to simple theoretical considerations.  相似文献   

15.
Electric susceptibility of a laser-dressed atomic medium is calculated for a model Λ-like system including two lower states and a continuum structured by a presence of an autoionizing state or a continuum with a laser-induced structure. Depending on the strength of a control field, it is possible to obtain a significant reduction of the light velocity in a narrow frequency window in the conditions of a small absorption. It is shown that increasing the values of the asymmetry parameters leads to an increase of the values of both real and imaginary parts of the medium susceptibility and to an increase of the width of the transparency window, compared with the case of a flat continuum. A smooth transition is shown between the case of a flat continuum and that of a discrete state serving as the upper state of a Λ system.  相似文献   

16.
We analyze the interaction of three laser fields with a four-level quantum system in a tripod configuration. We obtain an analytical expression for the linear susceptibility and nonlinear susceptibility of a weak-probe field and show that the properties of double electromagnetically induced transparency and the self-Kerr nonlinearity can be modified significantly by changing the ratio of the two coupling fields. We also show that a coherently prepared tripod scheme can be used for a giant self-Kerr nonlinearity generation with vanishing absorption in the case of optimal ratio. We present a physical understanding of our numerical results using the dressed-state approach and analytical explanation.  相似文献   

17.
In this paper we study the quantum phase properties of “nonlinear coherent states” and “solvable quantum systems with discrete spectra” using the Pegg-Barnett formalism in a unified approach. The presented procedure will then be applied to few special solvable quantum systems with known discrete spectrum as well as to some new classes of nonlinear oscillators with particular nonlinearity functions. Finally the associated phase distributions and their nonclasscial properties such as the squeezing in number and phase operators have been investigated, numerically.  相似文献   

18.
We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅〉 and the one-photon state |1〉, from a micromaser cavity to another.  相似文献   

19.
In a Doppler-broadened three-level Λ-type system driven simultaneously by a coupling laser and two equal-amplitude saturating laser fields with a frequency difference 2δ, the absorption spectrum of a weak probe laser exhibits multiple deep spectral holes through coherent hole-burning CHB with controllable numbers, widths, depths, and positions. More significant, changing δ or lasers directions, CHBs can degenerate into narrower and deeper spectral holes where the slope of the refractive index is very steep. The multiple narrow spectral holes in a single absorption profile are expected to have potential applications in high density storage, optical information processes, and slow-light.  相似文献   

20.
Qusay Mohammed Ali 《Optik》2005,116(11):515-520
The third-order nonlinear optical properties of Basic Green 1 dye were measured by the Z-scan technique and measurements were carried out at different concentrations and several incident intensities. The results showed that the Basic Green 1 dye exhibited large nonlinear refractive coefficient () and nonlinear absorption coefficient () at the wavelength 632.8 nm of He-Ne. The negative sign of the nonlinear refractive index n2 indicates that this material exhibits self-defocusing optical nonlinearity. These results show that Basic Green 1 dye has potential applications in nonlinear optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号