首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

2.
The continuous-wave high efficiency laser emission of Nd:YVO4 at the fundamental wavelength of 914 nm and its 457 nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. 6.5 W at 457 nm with M 2=1.8 was obtained from a 5-mm-thick 0.4 at.% Nd:YVO4 laser medium and a 15-mm-long LBO nonlinear crystal in a Z-type cavity for 18.6 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.35. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing level 4F5/2, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

3.
We report a high-efficiency Nd:YVO4 laser pumped by an all-solid-state Q-switched Ti:Sapphire laser at 880 nm in this paper. Output power at 1064 nm with different-doped Nd:YVO4 crystals of 0.4-, 1.0- and 3.0-at.% under the 880 nm pumping was measured, respectively. Comparative results obtained by the traditional pumping at 808 nm into the highly absorbing 4F5/2 level were presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power of the 1.0-at.% Nd:YVO4 laser under the 880 nm pumping was 17.5% higher and 11.5% lower than those of 808 nm pumping. In a 4-mm-thick, 1.0-at.% Nd:YVO4 crystal, a high slope efficiency of 75% was achieved under the 880 nm pumping, with an optical-to-optical conversion efficiency of 52.4%.  相似文献   

4.
43.6 W near-diffraction-limited continuous-wave laser beam at 1342 nm in 880 nm laser-diode partially end-pumped Nd:YVO4 slab laser is presented. The slope efficiency and optical-to-optical efficiency with respect to absorbed pumping power were 45.4% and 35.9%, respectively. At output power of 34.5 W, the M 2 factors in unstable and stable directions were 1.3 and 1.2, respectively.  相似文献   

5.
Yong-Liang Li  Yuan Dong  Yan-Fei Lü 《Optik》2011,122(13):1125-1127
A design of laser-diode array (LDA) end-pumped Nd:YVO4 laser that generates simultaneous laser action at wavelengths 1064 and 1342 nm is presented. Using type-I critical phase matching (CPM) BiB3O6, 593.5 nm continuous-wave (cw) Orange-yellow laser is obtained by 1064 nm and 1342 nm in an intra-cavity sum-frequency mixing. The maximum laser output power of 3.62 W is obtained when an incident pump laser of 27.5 W is used. The optical-to-optical conversion is up to 13.2%. To the best of our knowledge, this is the highest conversion efficiency at 593.5 nm in an intra-cavity sum-frequency Nd:YVO4 laser.  相似文献   

6.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

7.
We demonstrate a compact high-power passively mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate by 880 nm diode direct-in-band pumping. At the absorbed pump power of 19.9 W, a stable mode-locked output power of 7.8 W was obtained with the pulse width of 21.4 ps and a beam quality factor of M2 < 1.5, corresponding to an optical-optical conversion efficiency of 39.2%.  相似文献   

8.
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 462 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:CNGG crystal emitting at 935 nm. Intracavity sum-frequency mixing at 914 and 935 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 892 mW at 462 nm with a pump laser diode emitting 18.4 W at 808 nm.  相似文献   

9.
We report on a high-power 888-nm-pumped continuous-wave Nd:YVO4 laser at 1342 nm. An output power of 24 W emitted into a diffraction limited beam with an M 2 parameter better than <1.1 is demonstrated. At an absorbed pump power of 84 W the optical conversion efficiency is 29%.  相似文献   

10.
Yong-liang Li  Yu-lan Zhang 《Optik》2011,122(8):743-745
A sum-frequency yellow-green laser at 554.9 nm is reported by this paper, 946 nm wavelength is obtained from 4F3/2-4I9/2 transition in Nd:YAG and 1342 nm wavelength is obtained from 4F3/2-4I13/2 transition in Nd:YVO4. Using a doubly folded-cavity type-II critical phase matching KTP crystal intra cavity to make 946 nm laser from Nd:YAG and 1342 nm laser from Nd:YVO4 frequency summed, with incident pumped power of 30 W in Nd:YAG and 20 W in Nd:YVO4, TEM00 mode yellow-green laser at 554.9 nm at 1.15 W is obtained and its M2 factor is less than 1.22. The experimental results show that the Nd:YAG and Nd:YVO4 crystals intra-cavity sum-frequency mixing is an effective method for yellow-green laser and it can be applied to other two laser crystals to obtain more all-solid-state lasers with different wavelengths.  相似文献   

11.
An acousto-optically Q-switched self-Raman laser emitting at 1097 nm is demonstrated with a c-cut Nd:YVO4 crystal, using a fiber-coupled 880 nm diode laser as the pumping source. Raman laser performances in concave-plane and plane-plane oscillating cavities are studied and compared. With an absorbed diode power of 12.4 W and a pulse repetition rate of 50 kHz, the highest output power of 1.45 W is obtained from the plane-plane cavity, corresponding to an optical-to-optical conversion efficiency of 11.7%.  相似文献   

12.
The quasi-three-level 908-nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4 F 3/2 of Nd:YLF have been demonstrated. An end-pumped Nd:YLF crystal yielded 4.7 W of output power for 11.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 43.3%. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880-nm wavelength pumping.  相似文献   

13.
Highly efficient 1341 nm continuous-wave laser under 880 nm diode laser pumping in Nd:GdVO4 crystal is reported. Comparative results obtained by the traditional pumping at 808 nm were presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power under 880 nm pumping was 34.9% higher and 12.6% lower than those of 808 nm pumping. A high slope efficiency of 49.1% was achieved under 880 nm pumping, with an optical-to-optical conversion efficiency of 41.7%.  相似文献   

14.
A design of LD-pumped Nd:YVO4 laser that generates simultaneous laser action at wavelengths 1064 and 1342 nm by optimizing film design is presented. An optimized continuous-wave (cw) yellow laser at 593.5 nm in room temperature is obtained for the first time. Using type-I critical phase-matching (CPM)LBO crystal, a yellow laser at 593.5 nm is obtained by 1064 and 1342 nm intracavity sum-frequency mixing. The maximum laser output power of 85 mW is obtained when an incident pump laser of 1.8 W is used. The optical-to-optical conversion is up to 4.7%, and the power stability in 24 h is better than ±2.8%.  相似文献   

15.
The continuous-wave high efficiency laser emission of Nd:YAG at the fundamental wavelength of 1319 nm and its 659.5-nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 885 nm (on the 4 F 3/24 I 13/2 transition). An end-pumped Nd:YAG crystal yielded 9.1 W at 1319 nm of continuous-wave output power for 18.2 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power is 0.55. Furthermore, 5.2 W 659.5 nm red light is acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 0.286. Comparative results obtained for the pump with diode laser at 808 nm (on the 4 F 5/24 I 13/2 transition) are given in order to prove the advantages of the 885 nm wavelength pumping.  相似文献   

16.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

17.
J. H. Liu 《Laser Physics》2012,22(10):1463-1465
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.  相似文献   

18.
An efficient single-frequency continuous-wave Nd:YVO4 ring laser pumped at 880 nm is presented. With compact four-mirror ring cavity and optical isolator, we obtained an output power of 14.56 W at 1064 nm, corresponding to a slope efficiency of 61.7% and an optical-to-optical efficiency of 58.4% with respect to the absorbed pump power. The stability of the output power was better than ±0.5% over two hours. At the same time, a beam quality factor of M 2≈1.2 was measured and the line width of the longitudinal mode was about 25 MHz. To the best of our knowledge, this is the highest slope efficiency and optical-to-optical efficiency in single-frequency Nd:YVO4 ring laser.  相似文献   

19.
We present a high-efficiency Nd: LiYF4 (Nd:YLF) laser operating at 1321 nm pumped directly into the emitting level, 4F3/2. The linear polarization of the pump diode laser was maintained by a short fiber. At the absorbed pump power of 7.3 W, as high as 3.6 W of continuous-wave output power at 1321 nm is achieved. The slope efficiency with respect to the absorbed pump power was 0.52. To the best of our knowledge, this is the first demonstration of such a laser system. Comparative results obtained for the pump with a diode laser at 806 nm, into the highly absorbing 4F5/2 level, are given in order to prove the advantages of 880 nm wavelength pumping.  相似文献   

20.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号