首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To obtain the temperature-sensitive rate equations, a new energy level diagram of Praseodymium ion (Pr3+) in a glass host is modelled. By solving the modified rate equations, an analytical expression is presented to investigate the temperature dependence of the signal gain of a praseodymium-doped fiber amplifier (PDFA). It is seen that a change in the signal gain slightly depends on the variation of the distribution of Pr3+-ions in transitions 3F4 ↔ 3F3 with the temperature. Numerical calculations are carried out for the temperature range which is changing from −20 to +60 °C. Pr3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr3+-doped sulfide fiber amplifier pumped at 1028 nm are selected as an application for the 1.3 μm signal wavelengths. It is also seen that the prediction of the model is in good agrement with their experimental results.  相似文献   

2.
A theoretical study of the temperature-dependent gain and noise figure effects on erbium-doped fiber amplifiers (EDFAs) pumped at 1480 nm is investigated, solving the propagation equations related to two level systems. The solution of these equations is based on the population and temperature difference among amplification levels. The temperature-dependent propagation equation considered is used to determine the gain and noise figure effects on EDFAs. The population difference depends on pump and signal powers, Boltzmann factor KB, cross-sections, noise figure (NF) and Er3+ concentration. The temperature-dependent gain and noise figure effect the EDFA length are numerically obtained for the temperature range of −20 °C to +60 °C. All of the analyses consist of the amplified spontaneous emission (ASE) effect.  相似文献   

3.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

4.
This paper reported an investigation of remotely pumped double pass L-band amplifier with dispersion compensation technique. The proposed design used chirped fiber Bragg grating (CFBG) to reflect the amplified signal back into the active medium, compensate the effect of fiber dispersion and block the recycled forward amplified spontaneous emission (ASE) and the residual 1480 nm pump power. The characterization of the design was done experimentally. The gain is 37.5 dB and noise figure is 4 dB with best BER of 10−52 is achieved when the EDF is placed 150 km away from the transmitter and 48 km before the receiver terminal.  相似文献   

5.
Rajneesh Kaler 《Optik》2011,122(5):440-443
In this paper, we compare the Gain and Noise figure characteristics of physical EDFAs and Compact EDFAs in an optical system consisting of cascade of both the amplifiers. We demonstrate the gain, noise figure variations of a forward pumped EDFA and Compact EDFAs as functions of Er3+ fiber length, injected pump power and up-conversion co-efficient. It is observed that the gain becomes constant when the length of both the amplifiers reaches above 20 m. The comparison shows that the higher gain with flatter output is obtained in case of Compact EDFAs than Physical EDFAs in a system consisting of chain of both the amplifiers. It is further investigated that the agreement between the Compact and Physical EDFA models is good up to 10 m with the no up-conversion co-efficient. Also, the noise figure obtained in case of Physical EDFA is higher than Compact EDFAs when same amplifier length is more than 20 m and then becomes constant for both the amplifiers.  相似文献   

6.
A novel shooting method with excellent simple control strategy is developed for solving the failure to convergence of the traditional shooting methods themselves in fiber lasers model. Compared with the published literature, the novel shooting method provides a clear physical understanding method for getting the threshold pump power and the exact results with given random functions in Yb3+-doped fiber lasers and Er3+-doped fiber lasers. Then, the results in Er3+-doped fiber lasers and Yb3+-doped fiber lasers demonstrate that the solutions using the novel shooting method has high accuracy of 10−8 W with several iteration steps, which have extended the applicable range of the end-pumped power even lower than 1 mW pump power. Furthermore, compared with 1480 nm pump for the threshold and slope efficiencies of the Er3+-doped fiber lasers, 978 nm fiber lasers can extend wider scope of application and be pump source in the coming future. Finally, the lower threshold and higher slope efficiency at 975 nm than those of 910 nm pump in Yb3+-doped fiber lasers, 975 nm pump laser provides for broad band excellent cladding pump source.  相似文献   

7.
Ajay K. Sharma  S.K. Wadhwa 《Optik》2009,120(12):614-618
In this paper, the robustness of NRZ, RZ, carrier-suppressed RZ (CSRZ) and chirped RZ (CRZ) modulation formats at 40 Gbps for (OC-786) long haul link on the amplifier noise figure and fiber nonlinearities has been investigated. The investigations reveals that highest Q2(dB) of the order of [20, 25]; [19, 20]; [18, 19] and [16, 18] has been obtained in case of RZ, CSRZ, CRZ and NRZ modulation formats, respectively, in the presence of fiber nonlinearities and with and without amplifier noise figure of 6 dB. It has been observed that Q2(dB) in case of CRZ fluctuate between 18 and 14 at power variation of −10 to 4 dBm and NF of 6 dB, while it is between 19-9, 20-0 and 16-0 in case of CSRZ, RZ and NRZ. It has been identified that CRZ and CSRZ have shown the robustness on fiber nonlinearity and noise at 40 Gbps up to the transmission distance of 450 km. The wide eye opening in case of CRZ modulation also proved the robustness on fiber nonlinearity and noise.  相似文献   

8.
We present the results of an investigation of optical gain and noise figure for simultaneous multi-channel amplification of an erbium doped fibre amplifier (EDFA) under optimized pump condition. Different pump configurations with varying input signal levels show interesting features on gain flatness. In the experiment, population inversion along the fibre length which determines the gain-spectra and noise characteristics of the amplifier is adjusted through optimized fibre length and injected pump power in order to minimize the gain-tilt at C-band. It is observed that bi-directional pumping manifests the best combination of low noise and high gain of EDFA which are useful as in-line repeaters in WDM network. We obtain 30 ± 1.5 dB intrinsically flat small signal gain from 1538 nm to 1558 nm band of wavelength with noise figure <4 dB for 16-channel simultaneous amplification in a single stage EDFA without gain flattening filter.  相似文献   

9.
    
We report highly efficient CW fiber lasers at 2.7µm in an Er3+-doped and weakly Pr3+-codoped fluorozirconate fiber. The fiber lasers were pumped in three pump wavelength ranges around 650, 795 and 980 nm. Higher output powers of nearly 30 mW and a broader potential tuning range of 180 nm compared to Er3+ singly doped fiber lasers are demonstrated. Laser efficiencies of more than 13% were achieved. It is shown that the fiber laser can be tuned to longer wavelengths by increasing the pump power or, in certain cases, by increasing the pump wavelength. Furthermore, we present the wavelength tuning of the Er3+:Pr3+-codoped system by an external grating. The relationships between laser wavelength and pump rates are described, and the reasons for the improvements with Pr3+-codoping are given.  相似文献   

10.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

11.
掺钕保偏光纤放大器的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
任广军  魏臻  张强  姚建铨 《物理学报》2009,58(6):3897-3902
对掺钕双包层光纤放大器中抽运光和信号光沿光纤传播的功率分布进行了数值模拟,以808nm半导体激光器为抽运源,掺钕双包层保偏光纤为增益介质,对种子注入主振荡光纤放大器进行了理论分析和实验研究.利用实验室自制的皮秒锁模激光器为种子源,注入1064nm皮秒锁模脉冲,获得了稳定的放大脉冲.小信号时的放大倍数为300(增益为25dB),获得了平均功率5W的皮秒脉冲.同时利用TDS5104型示波器探测信号光放大前后的波形,并用光谱分析仪得到输出脉冲激光的光谱图. 关键词: 光纤放大器 掺钕保偏光纤 种子注入 反向抽运  相似文献   

12.
This paper presents an efficient pumping scheme for L-band erbium-doped fiber (EDFA) amplifier to reach high gain and low noise performance in a double-pass configuration. The main L-band amplifier is composed of two sections of EDFs. A 980 nm and a 1480 nm pump lasers are used to pump the first section of EDF bi-directionally. The generated backward C-band amplified spontaneous emission noise from this EDF is used to pump a subsequent un-pumped section of EDF. In the double-pass scheme, a narrow-band fiber Bragg grating at each channel wavelength is used to back-reflect the L-band signal to make it amplified twice by the pair of EDFs. Compared with its conventional counterpart, this new double-pass configuration provides a lower noise figure and a higher gain. The pump conversion efficiency can be improved by more than 50% in a 3-channel demonstration by using the proposed configuration.  相似文献   

13.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

14.
The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.  相似文献   

15.
Spectral broadening of spectrum-sliced amplified spontaneous emission (SS-ASE) in highly nonlinear, dispersion-shifted fiber in different dispersion regimes is investigated experimentally. We find that, the spectral noise of the amplified SS-ASE pump from Er3+-doped fiber amplifier seeds the spectral broadening via four-wave mixing or modulation instability. Stimulated Raman scattering, red-shifted Raman solitons, and blue-shifted dispersion waves all enhance the broadening of the spectrum. The effect of the polarization state of pump on supercontinuum generation is also investigated, and it is found that, linear polarization is more efficient than random polarization for pumping supercontinuum. Supercontinuum with −10 dB bandwidth of 200 nm is generated by launching linearly polarized pump with 33.5 dB m power into anomalous dispersion regime near to zero dispersion wavelength of fiber.  相似文献   

16.
The gain flattening of Yb3+-doped fiber amplifier of 1053 nm band has been realized in experiment using three cascade 1 × 2 fused tapered fiber coupler. The gain flattening band is about 20 nm with less than 1 dB power fluctuation around 1053 nm, which is agree with our numerical stimulation results very well.  相似文献   

17.
We demonstrate a 22 dB all-fiber amplifier at 546 nm using Er3+-doped fluoride fiber by forward upconversion pumping of a 974 nm laser diode. The gain saturation effects and the power conversion efficiency of this amplifier are investigated in detail based on gain characteristics and numerical simulations.  相似文献   

18.
Er3+/Ce3+ codoped bismuth-germanate glasses with the composition of Bi2O3-GeO2-Ga2O3-Na2O were prepared by the conventional melt-quenching method. The absorption spectra, fluorescence spectra, upconversion emission and lifetimes of Er3+ ions were measured, and the effects of Ce3+-doping on the spectroscopic properties of 1.53 μm band fluorescence of Er3+ ion were investigated based on the analysis of energy transfer between Er3+ and Ce3+ ions. The results indicate that the 1.53 μm band fluorescence intensity can be improved evidently with the Ce3+-doped concentration under the excitation of 980 nm. Meanwhile, the theoretical simulation based on the population rate equation and light power propagation equation indicates that the C + L band signal gain can also be improved dramatically by introducing Ce3+ ions into the Er3+-doped bismuth-germanate glass fiber. Therefore, it is necessary to introduce Ce3+ ions when Er3+-doped bismuth-germanate glass with low phonon energy is applied to the 1.53 μm band broad Er3+-doped fiber amplifier (EDFA).  相似文献   

19.
This paper aims to evaluate a comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier. The pump power and thulium-doped fiber (TDF) length for single-pass thulium-doped fiber amplifiers (TDFA) are theoretically optimized to achieve the optimum gain and noise figure (NF) at the center of S-band region. The 1064 nm pump is used to provide both ground-state and excited state absorptions for amplification in the S-band region. The theoretical result is in agreement with the published experimental result.  相似文献   

20.
High power and highly efficient operation of a Tm3+, Ho3+-doped silica fibre laser that is pumped with diode lasers operating at 1150 nm is demonstrated. Internal slope efficiencies approaching the Stokes limit were produced and the maximum output power was 2.9 W. High power diode lasers operating at 1150 nm are valuable pump sources for a range of fibre lasers offering output in the shortwave infrared spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号