首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
According to the paraxial form of the extended Huygens-Fresnel principle, the analytical formulas of the on-axis average irradiance and the on-axis scintillation index for a rectangular array Gaussian Schell-model (RAGSM) beams in atmospheric turbulence have been derived. The on-axis bit error rate has been analyzed quantitatively. Their effects of the turbulence intensity, the initial correlation length, and the array parameters including the beamlet number (M and N) and the array separation distance (x0 and y0) have been discussed. The results show that the correlated and uncorrelated superposition RAGSM beams exhibit the different on-axis intensity distribution, the similar variation of the on-axis scintillation and the bit error rate. At the nearer propagation distance the on-axis scintillation rises against propagation distance with the increasing beamlet number and the decreasing array separation distance, whereas the situation is reversed at the farther propagation distance. The effects of array parameters on the bit error rate are similar to that on the scintillation. For a given propagation distance the scintillation index increases with the stronger coherence and the larger waist width of the array beam.  相似文献   

2.
部分相干光通过强湍流对通信系统误码率的影响   总被引:1,自引:0,他引:1  
为研究部分相干光通过强湍流对系统误码率的影响,借助对激光在大气湍流场中的传输方程进行解析求解(忽略系统中其他噪声,仅考虑由大气湍流引起的系统误码率),得到不同湍流内尺度、传输激光波长和光源相干参数条件下,系统误码率和传输距离的关系.结果表明:在强湍流条件下,当发射天线数目达到一定时,随着传输距离的增加,系统误码率逐渐增大,但增大到一定程度后趋于饱和;光源相干参数越大,系统误码率越低;湍流内尺度越大,系统误码率越高;传输激光波长的变化对系统误码率无明显影响.  相似文献   

3.
空间光通信中基本振动对误码率的影响分析   总被引:1,自引:0,他引:1  
在探讨卫星振动对空间光通信系统误码率所产生的影响时,有必要分析不同振动类型的影响问题。为了使讨论简单,本文主要侧重对正弦振动进行分析。分析结果表明,当振动持续时间为整周期时,误码率仅为振幅的函数,此时误码率随振幅的增加迅速上升,而与振动频率无关;当振动持续时间为非整周期时,误码率随时间的增加而波动,波动的起伏逐渐减小,误码率趋于仅与振幅有关的常数。该项工作为今后研究卫星复杂振动对空间光通信的影响打下了基础,同时也为研究对卫星振动影响的补偿分析提供了有意义的参考  相似文献   

4.
An analytical model to describe the Gordon-Haus jitter has been introduced. We have analysed the effects of accumulated amplified spontaneous emission and Gordon-Haus jitter on the bit error rate (BER) performance for various digital modulation formats (that is, ASK, FSK and DPSK).  相似文献   

5.
《Optik》2014,125(21):6413-6417
Free space optics (FSO) is one of the sprouting technologies in optical communication systems domain. It can be employed as an alternative for the conventional radio frequency (RF) links to work out the current limitations in communication systems. But, the major drawback in FSO communication is the effect of random environment conditions on its performance. In this paper, we analyze the bit error rate (BER) and outage performance of single-input single-output (SISO) and multiple-input multiple-output (MIMO) FSO systems in strong atmospheric turbulence using binary phase shift keying subcarrier intensity modulation (BPSK-SIM) signaling technique. The closed-form expressions are derived and the results are realized in terms of 2D and 3D plots.  相似文献   

6.
We derive the bit error rate (BER) of inter-satellite laser communication (lasercom) links with on-off-keying systems in the presence of both wave-front aberrations and pointing error, but without considering the noise of the detector. Wave-front aberrations induced by receiver terminal have no influence on the BER, while wave-front aberrations induced by transmitter terminal will increase the BER. The BER depends on the area S which is truncated out by the threshold intensity of the detector (such as APD) on the intensity function in the receiver plane, and changes with root mean square (RMS) of wave-front aberrations. Numerical results show that the BER rises with the increasing of RMS value. The influences of Astigmatism, Coma, Curvature and Spherical aberration on the BER are compared. This work can benefit the design of lasercom system.  相似文献   

7.
The welcome and adaptation of optical wireless technology by the modern era has brought forward the concept of an inter-satellite free-space optical communication system. In the present work, I study the combined effect of selection of different operating wavelengths and detector types along with the pointing errors at the transmitter and receiver side on the performance of an inter-satellite free-space optical link. The link performance has been optimized by measuring and analyzing the bit error rate and quality-factor of received signal under different scenarios. Performance of the inter-satellite link has also been investigated considering different modulation formats and data rates for LEO and MEO distances.  相似文献   

8.
Hanling Wu  Haixing Yan  Xinyang Li 《Optik》2010,121(19):1789-1793
High-speed free-space optical communication systems have recently used fiber-optical components. The coupling efficiency with which the received laser beam can be coupled into a single-mode fiber is noticeably limited by atmospheric turbulence due to the degradation of its spatial coherence. Fortunately, adaptive optics (AO) can alleviate this limitation by partially correcting the turbulence-distorted wavefront. The coupling efficiency improvement provided by Zernike modal AO correction is numerically evaluated. It is found that the first 3-20 corrected polynomials can considerably improve the fiber-coupling efficiency. The improvement brought by AO is compared with that brought by a coherent fiber array. Finally, a hybrid technique that integrates AO and a coherent fiber array is proposed. Results show that the hybrid technique outperforms each of the two above-mentioned techniques.  相似文献   

9.
Optical CDMA over FSO communication system is very effective to provide high data rate transmission with very low bit error rate and low amount of multiple access interference. In this paper, we have presented optical CDMA over FSO communication system to the range of 8000 m. The simulative results reveal that the transmission distance is limited mainly by the multi-access interference (MAI) which arises when there are number of users in the system because of the fact that one user data becomes noisy for all other users in the channel.  相似文献   

10.
Optical communication technology shows promising prospects to fulfill the large bandwidth communication requirements of future deep-space exploration missions that are launched by NASA and various other international space agencies. At Earth, a telescope with a large aperture diameter is required to capture very weak optical signals that are transmitted from distant planets and to support large bandwidth communication link. A single large telescope has the limitations of cost, single point failure in case of malfunction, difficulty in manufacturing high quality optics, maintenance, and trouble in providing communication operations when transmitting spacecraft is close to the Sun. An array of relatively smaller-sized telescopes electrically connected to form an aggregate aperture area equivalent to a single large telescope is a viable alternative to a monolithic gigantic aperture. In this paper, we present the design concept and analysis of telescope array receivers for an optical communication link between Earth and Mars. Pulse-position modulation (PPM) is used at the transmitter end and photon-counting detectors along with the direct-detection technique are employed at each telescope element in the array. We also present the optimization of various system parameters, such as detector size (i.e., receiver field of view), PPM slot width, and the PPM order M, to mitigate the atmospheric turbulence and background noise effects, and to maximize the communication system performance. The performance of different array architectures is evaluated through analytical techniques and Monte-Carlo simulations for a broad range of operational scenarios, such as, Earth-Mars conjunction, Earth-Mars opposition, and different background and turbulence conditions. It is shown that the performance of the telescope array-based receiver is equivalent to a single large telescope; and as compared to current RF technology, telescope array-based optical receivers can provide several orders of magnitude greater data rates for deep-space communication with Mars.  相似文献   

11.
高速深空通信是深空探测的关键技术之一,具备单光子灵敏度的激光通信系统将大大提高现有的深空通信速度.然而,单光子条件下的激光通信不仅需要考虑传输环境的影响,还需要考虑实际单光子探测器性能和光子数量子态的分布.本文在不考虑大气湍流影响的情况下,以光电探测模型为基础,引入超导纳米线单光子探测器(SNSPD)系统的探测效率和暗计数,建立了反应系统差错性能的数学模型,提出了系统误码率的计算公式.先对公式中的光强和激光脉冲重复频率对误码率的影响进行仿真,再通过实验结果验证仿真模型.结果表明,光强对误码率的影响最明显,随着光强从0.01光子/脉冲到1000光子/脉冲的增加,误码率从10~(-1)到10~(-7)量级明显下降;激光脉冲重复频率对误码率的影响受到不同光强的制约,但都随着脉冲重复频率的增加呈下降趋势.与此同时,当增加光强或者提高速度时,误码率高于仿真结果,约在10~(-4)量级,其原因可能是实际通信中调制光信号的消光比不足和光纤引入背景噪声提高了系统暗计数.以上模型和实验结果为进一步开展基于SNSPD的月球-地球、火星-地球等高速深空激光通信奠定了基础.  相似文献   

12.
Free space optics (FSO) technology provides a promising solution for future broadband networks, offering high data transmission compared to RF technology. This work is focused on investigating the performance of an FSO system with OFDM and QAM. A 10 Gbps data stream is transmitted using a 4-level QAM sequence through the FSO system under different atmospheric conditions. Results indicate that the integration of SOA prolongs the maximum achievable distance with acceptable SNR to 185 km under clear weather conditions whereas under atmospheric fog, the maximum distance is extended to 2.5 km.  相似文献   

13.
An improved estimation of bit-error-rate (BER) for electrically multiplexed duty-cycle division multiplexing (E-DCDM), which is based on the probability of error, is presented. Performance of 3 × 10 Gbit/s E-DCDM is investigated in terms of optical signal-to-noise ratio (OSNR) and dispersion tolerance. This technique requires 29.4 dB OSNR and can tolerate ±96 ps/nm chromatic dispersion for the worst user.  相似文献   

14.
By analyzing the radiation dose on PIN photodetectors in space radiation environment, the variation of photocurrent and dark current after radiation is obtained. On the basis, the bit error rate of satellite laser communication based on space radiation dose of PIN photodetectors is established. According to simulation, when radiation dose is about 1.6 × 103 Gy and 7 × 104 Gy, bit error rate reaches 10−6 induced by 50 MeV and 10 MeV protons separately; and when radiation dose is within the range of 5 × 10 Gy–6 × 105 Gy, electrons and gamma-ray irradiation also cause increase in bit error rate to 10−6. The principle of damage dose on bit error rate is investigated, and the influence of decision threshold on bit error rate is further discussed. The result shows that when radiation dose is 1 MGy, if decision threshold is increased from 4.3 × 10−7 A to 5.5 × 10−7 A, bit error rate will decrease about 4 orders of magnitude. Hence, a proper decision threshold can improve system bit error rate efficiently.  相似文献   

15.
X射线通信系统的误码率分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王律强  苏桐  赵宝升  盛立志  刘永安  刘舵 《物理学报》2015,64(12):120701-120701
基于栅极控制脉冲发射X射线源与单光子探测技术的X射线通信语音方案已经在实验室实现, 为探索未来X射线深空通信应用打下了坚实的基础. 实验室X射线语音通信演示系统实现后, 迫切需要测试X射线通信系统的误码率性能. 在泊松噪声模型下对X射线通信演示系统的理论分析的基础上, 使用基于现场可编程门阵列的误码率测量方法对开关键控调制方式下X 射线通信误码率进行测量. 通过实验测量发现, 要实现语音通信, 系统误码率应该达到10-4 量级; 分析、测量了现有系统在开关键控调制方式下不同速率对应的误码率, 论证了泊松噪声模型理论分析现有X射线通信系统的合理性; 分析提出了限制现有实验室条件下X 射线通信误码率性能的主要因素.  相似文献   

16.
星地激光链路中光束发散角与跟瞄误差的最佳比值   总被引:1,自引:0,他引:1       下载免费PDF全文
 实际星地光通信系统的发射光束为高斯型的情况下,跟瞄误差和大气闪烁是星地激光链路中的主要信道噪声源。在结合两者对系统性能影响的前提下,对星地激光通信链路进行了理论分析和模型建立。基于该模型对星地激光链路中光束发散角与跟瞄误差之比的优化选择问题进行了研究。结果表明:对于上行链路,在不同误码率需求下都存在一个光束发散角与跟瞄误差的最佳比值,使得上行链路余量最大;对于下行链路,在不同误码率要求下均存在一个光束发散角与跟瞄误差的最佳比值,使得下行发射光功率的需求最小。利用最优化方法和最小二乘法拟合,得到星地激光链路中光束发散角与跟瞄误差的最佳比值和系统误码率的经验公式。  相似文献   

17.
The demand for high data rate, security and reliable communication is driving the development of free space optic communication (FSO) technology. The atmospheric effects such as scintillation, absorption and scattering severely affect the availability and range of the FSO system. The atmospheric rain absorbs and scatters the laser beam energy resulting in attenuation of the propagating signal. Initial development of FSO technology primarily used wavelength from infrared spectrum. In the recent years, the interest in visible light carrier for FSO applications is consistently increasing. In this paper, the effect of rain over two optical wavelengths from the visible spectrum i.e. 532 nm and 655 nm has been experimentally evaluated and results for the specific rain attenuation at 532 nm and 655 nm wavelengths have been compared.  相似文献   

18.
针对现有光空间脉冲位置调制频谱效率低、激光器利用率不高等问题,将分层技术与空间脉冲位置幅度调制相结合,提出了一种适合于大气激光通信的多层空间脉冲位置幅度调制方案.通过额外增加少量几个激光器构成多层结构,并通过脉冲位置幅度调制中的脉冲位置携带比特信息,不同层通过脉冲幅度得到区分.介绍了系统中层映射、空间脉冲位置幅度映射及其逆映射的原理,并推导出该方案的误码率表达式.利用蒙特卡洛仿真方法进一步验证了该方案的正确性,并与传统空间调制系统的性能进行了对比.结果表明:与传统光空间调制系统相比,所提方案提高了系统的频谱效率,且所用激光器数目更少.在传输比特相同的条件下,相对于(32,4,128)-空间脉冲位置调制系统,(9,4,8,2)-多层空间脉冲位置幅度调制系统的频谱效率提高了16倍,当误码率为10-3时,其信噪比改善了约1dB,且所用激光器数目不到前者的1/3.其中,括号中的参数分别表示激光器数目、探测器数目、采用调制方式的阶数及层数,层数为1时忽略.  相似文献   

19.
The bit-error-rate (BER) performance of coherent free-space optical (FSO) links employing phase compensation techniques is investigated in weak non-Kolmogorov turbulence. Assuming that the amplitude fading and phase fluctuation follow lognormal model and Gaussian distribution respectively and using the expression of non-Kolmogorov turbulence in terms of Zernike polynomials, the signal-to-noise ratio (SNR) at the coherent receiver is analyzed and as a special case, a new closed-form expression using chi-square distribution is obtained. Thus, the influence of different compensation modes and normalized receiver diameter on BER performance is evaluated and an optimum normalized receiver diameter is suggested to achieve the minimum BER. Moreover, the impact of outer scale L0 and the exponent value α in non-Kolmogorov spectrum is studied with the optimum diameter, which reveals that the BER has an obvious decrease with larger values of L0 and α.  相似文献   

20.
Free space optics (FSO) has attracted a lot of attention for a variety of applications in telecommunications area, and it is dream of every researcher and telecommunication society to make it a real alternative solution for the last mile problem, to replace fiber optics. FSO is much preferred because of its low maintenance cost and deployment time. FSO with single-beam system is vulnerable to atmospheric attenuation, so to overcome this, a multiple-beam FSO transceiver system has become prominent and is usually used. In this paper, average rain attenuation is evaluated from the collected rain intensity data which are collected for a period of seven months, and implemented in the study concerning results relating link distance, and received optical power of using multiple-beam FSO system in tropical rainy weather. Comparison is made in terms of received optical power, geometrical losses, atmospheric losses, and bit error rate (BER) on using different number of optical beams, based on simulation at data rate of 1 Gb/s. From the results it is clear that the quality of received power is improved by using up to four beams, along with link distance up to 1141.2 m as compared to one-beam, two-beam, and three-beam, with link distances 833.3 m, 991.0 m, 1075.4 m, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号