首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used a density-functional theory based on the interaction site model to predict the liquid-vapor coexistence curve of nitrogen fluid. The pressure and chemical potential were calculated from thermodynamic integrations. The different paths of thermodynamic integration provide slightly different predictions for the liquid-vapor coexistence curve. However, these critical points and coexistence curves evaluated by the theory are in qualitative agreement with the experimental data. The theoretical coexistence curves scaled to critical constants agree with the experimental data quantitatively.  相似文献   

2.
We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension of the usual hybrid approximations by essentially adding a fraction λ of exact static correlation in addition to the fraction λ of exact exchange. Test calculations on the cycloaddition reactions of ozone with ethylene or acetylene and the dissociation of diatomic molecules with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr density functionals show that a good value of λ is 0.25, as in the usual hybrid approximations. The results suggest that the proposed multiconfigurational hybrid approximations can improve over usual density-functional calculations for situations with strong static correlation effects.  相似文献   

3.
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.  相似文献   

4.
An efficient approximate scheme for density-functional theory (DFT) calculations, which eliminates the time-consuming self-consistent-field (SCF) procedure, is proposed using a dual-level DFT approach. In this approach, dual levels of basis sets and exchange-correlation functionals are adopted. The dual-level DFT approach is based on the idea that the total electron density in the ground state can be represented in terms of the density evaluated using the low-quality basis set and the low-cost exchange-correlation functional. Since the SCF procedure is avoided in the total energy evaluation, the dual-level DFT approach drastically reduces the computational cost. The applications of several dual-level DFT calculations to molecular systems show that our approach is more efficient than the self-consistent DFT approach with a moderate accuracy.  相似文献   

5.
A highly efficient new algorithm for time-dependent density-functional theory (TDDFT) calculations is presented. In this algorithm, a dual-level approach to speed up DFT calculations (Nakajima and Hirao, J Chem Phys 2006, 124, 184108) is combined with a state-specific (SS) algorithm for TDDFT (Chiba et al., Chem Phys Lett 2006, 420, 391). The dual-level SS-TDDFT algorithm was applied to excitation energy calculations of typical small molecules, the Q bands of the chlorophyll A molecule, the charge-transfer energy of the zincbacteriochlorin-bacteriochlorin model system, and the lowest-lying excitation of the circumcoronene molecule. As a result, it was found that the dual-level SS-TDDFT gave correct excitation energies with errors of 0.2-0.3 eV from the standard TDDFT approach, with much lower CPU times for various types of excitation energies of large-scale molecules.  相似文献   

6.
Density and chain conformation profiles of square-well chains between two parallel walls were studied by using density-functional theory. The free energy of square-well chains is separated into two contributions: the hard-sphere repulsion and the attraction. The Heaviside function is used as the weighting function for both of the two parts. The equation of state of Hu et al. is used to calculate the excess free energy of the repulsive part. The equation of state of statistical associating fluid theory for chain molecules with attractive potentials of variable range [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] is used to calculate the excess free energy of the attractive part. Because the wall is inaccessible to a mass center of a longer chain, there exists a sharp fall in the distribution of end-to-end distance near the wall as the chain length increases. When the average density of the system is not too low, the prediction of this work is in good agreement with computer simulation results for the density profiles and the chain conformation over a wide range of chain length, temperature, and attraction strength of the walls. However, when the average density and the temperature are very low, the prediction deviates to a certain degree from the computer simulation results for molecules with long chain length. A more accurate functional approximation is needed.  相似文献   

7.
The adsorption of nitrous oxide, N2O, on a Rh110 surface has been characterized by using density-functional theory. N2O was found to bind to the surface in two alternative forms. The first, less stable form is tilted with the terminal N atom attached to the surface, while the second, more stable form lies horizontally on the surface. Adsorption on the on-top site is more stable than that on the bridge site. The tilted form remains linear on adsorption, while the horizontal form is bent, with the terminal-nitrogen and oxygen atoms pointing towards the surface. At lower adsorbate coverage, Theta less than or similar to 1/4 ML (ML-monolayer), the adsorption of a few horizontal N2O configurations is dissociative, i.e., N2O-->N2(a)+O(a). The N2O-surface interaction is discussed in terms of the electronic structure analysis.  相似文献   

8.
We present molecular dynamics simulations of planar Poiseuille flow of a Lennard-Jones fluid at various temperatures and body forces. Local thermostatting is used close to the walls to reach steady-state up to a limit body force. Macroscopic fields are obtained from microscopic data by time- and space-averaging and smoothing the data with a self-consistent coarse-graining method based on kernel interpolation. Two phenomena make the system interesting: (i) strongly confined fluids show layering, i.e., strong oscillations in density near the walls, and (ii) the stress deviates from the Newtonian fluid assumption, not only in the layered regime, but also much further away from the walls. Various scalar, vectorial, and tensorial fields are analyzed and related to each other in order to understand better the effects of both the inhomogeneous density and the anisotropy on the flow behavior and rheology. The eigenvalues and eigendirections of the stress tensor are used to quantify the anisotropy in stress and form the basis of a newly proposed objective, inherently anisotropic constitutive model that allows for non-collinear stress and strain gradient by construction.  相似文献   

9.
10.
First-principles calculations based on density functional theory (DFT) are used to study the chemisorption properties of one, two, and four hydrogen atoms on the zigzag and armchair single-walled InN nanotubes (InNNTs).The results indicate that the H atom is strongly bounded to the exterior wall of (4, 4) InNNTs compared with the (7, 0) InNNTs, while the chemisorption energies corresponding to the most stable configuration of H2 dissociation and a single H atom are found to be–3.85 and–3.26 eV, respectively. Furthermore, the effect of the hydrogen storage on the geometries and electronic properties of related InN nanotubes were also discussed. The computed density of states (DOS) indicates that the energy gap of the zigzag and armchair InN nanotubes on hydrogen adsorptions are significantly decreased which can increase the electrical conductance of the tubes. Therefore, InN nanotubes due to the high binding energy can be used for hydrogen storage.  相似文献   

11.
We present an extension of the frozen-density embedding (FDE) scheme within density-functional theory [T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993)] that can be applied to subsystems connected by covalent bonds, as well as a practical implementation of such an extended FDE scheme. We show how the proposed scheme can be employed for quantum chemical calculations of proteins by treating each constituting amino acid as a separate subsystem. To assess the accuracy of the extended FDE scheme, we present calculations for several dipeptides and for the protein ubiquitin.  相似文献   

12.
The electrophilicity index is analyzed within the framework of spin-polarized density-functional theory. In this context, constrained philicities, omega(N) identical with (mu(N))(2)(2eta(NN)), are introduced in order to define the capability of a system to acquire or donate electrons in a process at constant spin number. The spin-philicity/spin-donicity indices, omega(S)(+/-) identical with (mu(S) (+/-))(2)(2eta(SS)), are examined and rationalized here as the philicity of a given system to change its spin-polarization state, as being defined through the spin potential mu(S) and spin hardness eta(SS) for a process at constant number of electrons. The local extension of these indices has been also outlined and numerical results have been discussed on the analysis of the electrophilic nature of some simple carbene systems both in the singlet and triplet states.  相似文献   

13.
Six square-well (SW) statistical associating fluid theory (SAFT) models, fitted to the experimental saturated liquid volume and saturated vapor pressure for pure n-alkanes, are analyzed for predicting the coexisting densities, second virial coefficients, and binary phase equilibria. The models that result in low values of the segment energy and weak molecular weight dependence of the parameters are found to be more accurate for real fluids. The inclusion of the dimer structure in the SW chain term seems to produce no significant benefit for representing real substances.  相似文献   

14.
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born-Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear emission spectra using the time-propagation method.  相似文献   

15.
This paper proposes methods for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) and compares them with each other and with multiconfigurational self-consistent field calculations. They are shown to be accurate and, as expected, the costs of their calculation scale more favorably with system size than post-Hartree-Fock calculations. The proposed methods are based on single-particle excitations and the associated Slater transition-state densities to overcome the problem of the unavailability of multielectron states in DFT which precludes a straightforward calculation of the matrix elements of the nuclear gradient operator. An iterative scheme employing linear-response theory was found to offer the best trade-off between accuracy and efficiency. The algorithms presented here have been implemented for doublet-doublet excitations within a plane-wave-basis and pseudopotential framework but are easily generalizable to other excitations and basis sets. Owing to their fundamental importance in cases where the Born-Oppenheimer separation of motions is not valid, these derivative couplings can facilitate, for example, the treatment of nonadiabatic charge transfers, of electron-phonon couplings, and of radiationless electronic transitions in DFT.  相似文献   

16.
We study the water bilayer on clean and hydrogen preadsorbed Rh(111) surfaces by means of density-functional theory with the generalized gradient approximation and the van der Waals density functional, to investigate the influence of adsorbed hydrogen on the adsorption state of water. We found that adsorbed hydrogen interacts repulsively with water through its 1b(1) and 4a(1) orbitals. The repulsion dominates at high hydrogen coverage, resulting in a hydrophobic Rh(111)-H surface.  相似文献   

17.
We present density-functional theory calculations of triplet-triplet absorption by three different approaches based on time-dependent density-functional theory (DFT): unrestricted DFT linear response, open-shell restricted DFT linear response applied to the triplet state, and quadratic response with triplet excitations applied to the ground state. Comparison is also made with corresponding results obtained by Hartree-Fock and multiconfiguration self-consistent-field response theory. Two main conclusions concerning triplet-triplet transitions are drawn in this study: First, the very good agreement between unrestricted and restricted DFT results indicates that spin contamination of the triplet state is not a serious problem when computing triplet-triplet spectra of common organic molecules. Second, DFT response calculations of triplet-triplet transitions can be affected by triplet instability problems, especially for the combination of DFT quadratic response with functionals containing fractional exact Hartree-Fock exchange.  相似文献   

18.
The geometries, stabilities, and electronic properties of Ge(n) and CuGe(n) (n = 2-13) clusters have been systematically investigated by using density-functional approach. According to optimized CuGe(n) geometries, growth patterns of Cu-capped Ge(n) or Cu-substituted Ge(n+1) clusters for the small- or middle-sized CuGe(n) clusters as well as growth patterns of Cu-concaved Ge(n) or Ge-capped CuGe(n-1) clusters for the large-sized CuGe(n) clusters are apparently dominant. The average atomic binding energies and fragmentation energies are calculated and discussed; particularly, the relative stabilities of CuGe10 and Ge10 are the strongest among all different sized CuGe(n) and Ge(n) clusters, respectively. These findings are in good agreement with the available experimental results on CoGe10- and Ge10 clusters. Consequently, unlike some transition metal (TM)Si12, the hexagonal prism CuGe12 is only low-lying structure; however, the basket-like structure is located as the lowest-energy structure. Different from some TM-doped silicon clusters, charge always transfers from copper to germanium atoms in all different sized clusters. Furthermore, the calculated highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) gaps are obviously decreased when Cu is doped into the Ge(n) clusters, together with the decrease of HOMO-LUMO gaps, as the size of clusters increases. Additionally, the contribution of the doped Cu atom to bond properties and polarizabilities of the Ge(n) clusters is also discussed.  相似文献   

19.
This work investigates the capability of time-dependent density functional response theory to describe excited state potential energy surfaces of conjugated organic molecules. Applications to linear polyenes, aromatic systems, and the protonated Schiff base of retinal demonstrate the scope of currently used exchange-correlation functionals as local, adiabatic approximations to time-dependent Kohn-Sham theory. The results are compared to experimental and ab initio data of various kinds to attain a critical analysis of common problems concerning charge transfer and long range (nondynamic) correlation effects. This analysis goes beyond a local investigation of electronic properties and incorporates a global view of the excited state potential energy surfaces.  相似文献   

20.
A structural investigation of liquid N-methylacetamide (NMA) is performed by x-ray scattering and density functional theory (DFT). Experimental data are analyzed to yield the total structure function SM(Q) and the pair correlation function g(r). The DFT calculations, using the standard triple zeta valence basis set augmented by a diffuse function for carbon, nitrogen and oxygen atoms, are performed on the one hand to study the structure and stability of the two possible conformers cis and trans. On the other hand, they are meant to examine some possible clusters which may describe the intermolecular arrangement in liquid NMA. Among two series of dimers and trimers associations, the spectra are particularly interpreted in terms of: Trans NMA dimers and trimers which resemble the short-range crystal structure, mixed cis and trans trimers and cis cyclic trimers. The H-bonding parameters and the intermolecular energy for each model are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号