首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two stable products of reactions of water molecules with the Al3O3- cluster, Al3O4H2- and Al3O5H4-, are studied with electronic structure calculations. There are several minima with similar energies for both anions and the corresponding molecules. Dissociative absorption of a water molecule to produce an anionic cluster with hydroxide ions is thermodynamically favored over the formation of Al3O3-(H2O)n complexes. Vertical electron detachment energies of Al3O4H2- and Al3O5H4- calculated with ab initio electron propagator methods provide a quantitative interpretation of recent anion photoelectron spectra. Contrasts and similarities in these spectra may be explained in terms of the Dyson orbitals associated with each transition energy.  相似文献   

2.
Photoelectron spectra of two species, Al3O3(H2O)2- and Al3O3(CH3OH)2-, that are produced by the addition of two water or methanol molecules to Al3O3- are interpreted with density-functional geometry optimizations and electron propagator calculations of vertical electron detachment energies. In both cases, there is only one isomer that is responsible for the observed spectral features. A high barrier to the addition of a second molecule may impede the formation of Al3O3N2H6- clusters in an analogous experiment with NH3.  相似文献   

3.
Photoelectron spectra of Al3O4H2- clusters formed by reactions of Al3O3- with water molecules have been interpreted recently in terms of dissociative absorption products with hydroxide and oxide anions that are coordinated to aluminum cations. Alternative isomers with Al-H bonds have lower energies, but barriers to hydrogen migrations that break O-H bonds and create Al-H bonds are high. Ab initio electron propagator calculations of the vertical electron detachment energies of the anions indicate that the species with hydrides cannot be assigned to the chief features in the photoelectron spectrum. Therefore, the previously studied dissociative absorption products are the structures that are most likely to be probed in the photoelectron spectra.  相似文献   

4.
The reactions of trimethylindium (TMIn) with H2O and H2S are relevant to the chemical vapor deposition of indium oxide and indium sulfide thin films. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/[6-31G(d,p)+Lanl2dz]//B3LYP/[6-31G(d,p)+Lanl2dz] and CCSD(T)/[6-31G(d,p)+Lanl2dz] //MP2/[6-31G(d,p)+Lanl2dz] methods. The results of both methods are in good agreement for the optimized geometries and relative energies. When TMIn reacts with H2O and H2S, initial molecular complexes [(CH3)3In:OH2 (R1)] and [(CH3)3In:SH2 (R2)] are formed with 12.6 and 3.9 kcal/mol binding energies. Elimination of a CH4 molecule from each complex occurs with a similar energy barrier at TS1 (19.9 kcal/mol) and at TS3 (22.1 kcal/mol), respectively, giving stable intermediates (CH3)2InOH and (CH3)2InSH. The elimination of the second CH4 molecule from these intermediate products, however, has to overcome very high and much different barriers of 66.1 and 53.2 kcal/mol, respectively. In the case of DMIn with H2O and H2S reactions, formation of both InO and InS is exothermic by 3.1 and 30.8 kcal/mol respectively. On the basis of the predicted heats of formation of R1 and R2 at 0 K and -20.1 and 43.6 kcal/mol, the heats of formation of (CH3)2InOH, (CH3)2InSH, CH3InO, CH3InS, InO, and InS are estimated to be -20.6, 31.8, and 29.0 and 48.4, 35.5, and 58.5 kcal/mol, respectively. The values for InO and InS are in good agreement with available experimental data. A similar study on the reactions of (CH3)2In with H2O and H2S has been carried out; in these reactions CH3InOH and CH3InSH were found to be the key intermediate products.  相似文献   

5.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

6.
The reactions of C2-, C4-, and C6- with D2O and ND3 and of C4- with CH3OH, CH4, and C2H6 have been investigated using guided ion beam tandem mass spectrometry. Hydrogen (or deuterium) atom transfer is the major product channel for each of the reactions. The reaction threshold energies for collisional activation are reported. Several of the reactions exhibit threshold energies in excess of the reaction endothermicity. Potential energy calculations using density functional theory show energy barriers for some of the reactions. Dynamic restrictions related to multiple wells along the reaction path may also contribute to elevated threshold energies. The results indicate that the reactions with D2O have the smallest excess threshold energies, which may therefore be used to derive lower limits on the C-H bond dissociation energies of the C2nH- and C2nH (n = 1-3) linear species. The experimental lower limits for the bond dissociation energies of the neutral radicals to linear products are D0(C2-H) >or= 460 +/- 15 kJ/mol, D0(C4-H) >or= 427 +/- 12 kJ/mol, and D0(C6-H) >or= 405 +/- 11 kJ/mol.  相似文献   

7.
The reaction of the isostructural anions of group 13 hydrides EH4- (E = B, Al, Ga) with proton donors of different strength (CH3OH, CF3CH2OH, and CF3OH) was studied with different theoretical methods [DFT/B3LYP and second-order M?ller-Plesset (MP2) using the 6-311++G(d,p) basis set]. The results show the general mechanism of the reaction: the dihydrogen-bonded (DHB) adduct (EH...HO) formation leads through the activation barrier to the next concerted step of H2 elimination and alkoxo product formation. The structures, interaction energies (calculated by different approaches including the energy decomposition analysis), vibrational E-H modes, and electron-density distributions were analyzed for all of the DHB adducts. The transition state (TS) is the dihydrogen complex stabilized by a hydrogen bond with the anion [EH3(eta2-H2)...OR-]. The single exception is the reaction of BH4- with CF3OH exhibiting two TSs separated by a shallow minimum of the BH3(eta2-H2)...OR- intermediate. The structures and energies of all of the species were calculated, leading to the establishment of the potential energy profiles for the reaction. A comparison is made with the mechanism of the proton-transfer reaction to transition-metal hydrides. The solvent influence on the stability of all of the species along the reaction pathway was accounted for by means of polarizable conductor calculation model calculations in tetrahydrofuran (THF). Although in THF the DHB intermediates, the TSs, and the products are destabilized with respect to the separated reactants, the energy barriers for the proton transfer are only slightly affected by the solvent. The dependence of the energies of the DHB complexes, TSs, and products as well as the energy barriers for the H2 release on the central atom and the proton donor strength is also discussed.  相似文献   

8.
The formation of sulfuric acid (H(2)SO(4)), nitric acid (HNO(3)), acetic acid (CH(3)C(O)OH), and formic acid (HC(O))H) complexes with ammonia (NH(3)), amidogen radical (NH(2)), and imidogen radical (NH) was studied using natural bond orbital calculations. The equilibrium structures, binding energies, and harmonic frequencies were calculated for each acid-NH(x) complex using hybrid density functional (B3LYP) and second-order M?ller-Plesset perturbation approximation methods with the 6-311++G(3df,3pd) basis set. The results presented here suggest that the effect of NH(2) on the formation of new condensation nuclei will be similar to that of NH(3), but to a lesser degree and confined primarily to complexes with H(2)SO(4) and HNO(3). The NH radical is not expected to play a significant role in the formation of new atmospheric condensation nuclei.  相似文献   

9.
The interactions of pyridine and 4,4'-bipyridine with the Lewis acid sites of alumina surfaces are investigated using ab initio and density functional calculations. Four cluster models of different sizes and shapes are chosen to represent the Lewis acid sites: three hydrogenated clusters Al(OH)(3), Al(4)O(9)H(6), and Al(10)O(21)H(12) and one non-hydrogenated cluster Al(4)O(6). The Hartree-Fock (HF) and B3LYP approaches with two basis sets 6-31G and 6-31+G are used to calculate the geometries, the electronic structures, the vibrational frequencies, and the adsorption energies of the complexes formed upon interaction of pyridine or 4,4'-bipyridine ligands on the cluster surfaces. Electronic structures are determined by the electrostatic potential (ESP) analysis of charges. Adsorption energies are calculated with corrections made for zero-point energies (ZPE) and basis set superposition error (BSSE). The ESP analysis of atomic charges reveals that the charge-transfer effects are more important in Lewis complexes formed with Al(4)O(6) cluster than in those formed with hydrogenated clusters Al(OH)(3), Al(4)O(9)H(6), and Al(10)O(21)H(12). The significantly larger charge transferred from pyridine or 4,4'-bipyridine ligand to Al(4)O(6) cluster should increase the adsorption energy of these complexes. Consequently, at all levels of calculation, the adsorption energies of pyridine and 4,4'-bipyridine complexed to Al(4)O(6) cluster ( approximately 46 kcal/mol), which compare very well to experiment, are strongly larger than those obtained for both pyridine and 4,4'-bipyridine ligands complexed to Al(OH)(3) (32 kcal/mol), Al(4)O(9)H(6) (24 kcal/mol) and Al(10)O(21)H(12) (25 kcal/mol) clusters. The corrected adsorption energy is found to be insensitive to basis set and electron correlation effects. It essentially depends on the ionic character of the cluster model rather than on its size. For 4,4'-bipyridine complexes, similar results to those obtained for pyridine are found, and the geometry and the amount of charge of the unbound pyridyl ring are unchanged upon complexation. The calculated vibrational frequencies and frequency shifts are little sensitive to the size and shape of the cluster model. The two ring stretching modes 8a and 19b of pyridine and 4,4'-bipyridine observed in the 1400-1600 cm(-1) region are the most affected modes upon adsorption, in good agreement with the available infrared and Raman data.  相似文献   

10.
Electronic structure calculations based on multiconfiguration wave functions are used to investigate a set of archetypal reactions relevant to O(3P) processing of hydrocarbon molecules and surfaces. These include O(3P) reactions with methane and ethane to give OH plus methyl or ethyl radicals, O(3P) + ethane to give CH3O + CH3, and secondary reactions of the OH product radical with ethane and the ethyl radical. Geometry optimization is carried out with CASSCF/cc-pVTZ for all reactions, and with CASPT2/cc-pVTZ for O(3P) + methane/ethane. Single-point energy corrections are applied with CASPT2, CASPT3, and MRCI + Q with the cc-pVTZ and cc-pVQZ basis sets, and the energies extrapolated to the complete basis set limit (CBL). Where comparison of computed barriers and energies of reaction with experiment is possible, the agreement is good to excellent. The best agreement (within experimental error) is found for MRCI + Q/CBL applied to O(3P) + methane. For the other reactions, CASPT2/CBL and MRCI + Q/CBL predictions differ from experiment by 1-5 kcal/mol for 0 K enthalpies of reaction, and are within 1 kcal/mol of the best-estimate experimental range of 0 K barriers for O(3P) + ethane and OH + ethane. The accuracy of MRCI + Q/CBL is limited mainly by the quality of the active space. CASPT2/CBL barriers are consistently lower than MRCI + Q/CBL barriers with identical reference spaces.  相似文献   

11.
The energetics of the stationary points of the gas-phase reactions CH(3)X+F(-)-->CH(3)F+X(-) (X=F, Cl, CN, OH, SH, NH(2) and PH(2)) have been definitively computed using focal point analyses. These analyses entailed extrapolation to the one-particle limit for the Hartree-Fock and MP2 energies using basis sets of up to aug-cc-pV5Z quality, inclusion of higher-order electron correlation [CCSD and CCSD(T)] with basis sets of aug-cc-pVTZ quality, and addition of auxiliary terms for core correlation and scalar relativistic effects. The final net activation barriers for the forward reactions are: E (b/F,F)=-0.8, E (b/F, Cl)=-12.2, E (b/F,OH)=+13.6, E b/F,OH=+16.1, E b/F,SH=+2.8, Eb/F, NH=+32.8, and E b/F,PH =+19.7 kcal x mol(-1). For the reverse reactions E b/F,F= -0.8, Eb/Cl,F =+18.3, E b/CN,F=+12.2, E b/OH,F =-1.8, E b/SH,F =+13.2, E b/NH(2),=-1.5, and E b/PH(2) =+9.6 kcal x mol(-1). The change in energetics between the CCSD(T)/aug-cc-pVTZ reference prediction and the final extrapolated focal point value is generally 0.5-1.0 kcal mol(-1). The inclusion of a tight d function in the basis sets for second-row atoms, that is, utilizing the aug-cc-pV(X+d)Z series, appears to change the relative energies by only 0.2 kcal x mol(-1). Additionally, several decomposition schemes have been utilized to partition the ion-molecule complexation energies, namely the Morokuma-Kitaura (MK), reduced variational space (RVS), and symmetry adapted perturbation theory (SAPT) techniques. The reactant complexes fall into two groups, mostly electrostatic complexes (FCH(3).F(-) and ClCH(3).F(-)), and those with substantial covalent character (NCCH(3).F(-), CH(3)OH.F(-), CH(3)SH.F(-), CH(3)NH(2).F(-) and CH(3)PH(2).F(-)). All of the product complexes are of the form FCH(3).X(-) and are primarily electrostatic.  相似文献   

12.
The calculations performed at the OVGF/6-311++G(3df,3pd)//MP2/6-311++G(d,p) level for the representative NaX(2)(-) and AlX(4)(-) anions matching the MX(k+1)(-) superhalogen formula and utilizing 9-electron systems (i.e., consisting of various possible combinations of atoms containing nine electrons when brought together) revealed that the OH, Li(2)H(3), and NH(2) groups might be considered as alternative ligands X due to their thermodynamic stability and large values of electron binding energy (approaching or even exceeding 6 eV in some cases). All aluminum-containing AlX(4)(-) anions (excluding Al(HBLi)(4)(-)) were predicted to be thermodynamically stable, whereas the NaX(2)(-) anions for X = CH(3), HBLi, CLi, BeB, and H(2)BeLi were found to be susceptible to the fragmentations leading to Na(-) loss. Among the MX(k+1)(-) (M = Na, Al; X = Li(2)H(3), OH, H(2)BeLi, BeB, NH(2), HBLi, CH(3), Be(2)H, CLi) anions utilizing systems containing 9 electrons (and thus isoelectronic with the F atom) the largest vertical electron detachment energy of 6.38 eV was obtained for Al(OH)(4)(-).  相似文献   

13.
Bond dissociation energies (BDEs) for complexes of ground state Mg+ (2S) with several small oxygen- and nitrogen-containing ligands (H2O, CO, CO2, H2CO, CH3OH, HCOOH, H2CCO, CH3CHO, c-C2H4O, H2CCHOH, CH3CH2OH, CH3OCH3, NH3, HCN, H2CNH, CH3NH2, CH3CN, CH3CH2NH2, (CH3)2NH, H2NCN, and HCONH2) have been calculated at the CP-dG2thaw level of theory. These BDE values, as well as counterpoise-corrected MP2(thaw)/6-311+G(2df,p) calculations on the Mg+ complexes of several larger ligands, augment and complement existing experimental or theoretical determinations of gas-phase Mg+/ligand bond strengths. The reaction kinetics of complex formation are also investigated via variational transition state theory (VTST) calculations using the computed ligand and molecular ion parameters. Radiative association rate coefficients for most of these systems increase by approximately 1 order of magnitude with every 3-fold reduction in temperature from 300 to 10 K. Several of the largest molecules surveyed-notably, CH3COOH, (CH3)2CO, and CH3CH2CN-exhibit comparatively efficient radiative association with Mg+ (k(RA) > or = 1.0 x 10(-10) cm3 molecule(-1) s(-1)) at temperatures as high as 100 K, implying that these processes may have a considerable influence on the metal ion chemistry of warm molecular astrophysical environments known to contain these potential ligands. Our calculations also identify the infrared chromophoric brightness of various functional groups as a significant factor influencing the efficiency of the radiative association process.  相似文献   

14.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

15.
本文主要用气相色谱逸出气体分析方法,借助于红外、紫外可见漫反射谱等手段研究了[Co(NH_3)_5(H_2O)]Br_3、[Cr(NH_3)_5(H_2O)](NO_3)_3与无机盐KY(Y=Cl,Br,Ⅰ)的固相反应,计算了失水与失氨的动力学参数,发现第一步反应失水生成一取代中间产物,其活化能与外加阴离子无关,为S_N1过程。第二步失氨反应活化能与中心离子M以及取代基Y有关,当M=Co(Ⅲ)时,反应体系的失氨活化能大小有下列顺序:Cl>Br>Ⅰ(E值分别为187、155、98kJ·mol~(-1)),M=Cr(Ⅲ)时则正好相反:Ⅰ>Br>Cl(E值分别为213、146、79 kJ·mol~(-1))。  相似文献   

16.
The existence of a series of organic peroxy radical-water complexes [CH3O2.H2O (methyl peroxy); CH3CH2O2.H2O (ethyl peroxy); CH3C(O)O2.H2O (acetyl peroxy); CH3C(O)CH2O2.H2O (acetonyl peroxy); CH2(OH)O2.H2O (hydroxyl methyl peroxy); CH2(OH)CH2O2.H2O (2-hydroxy ethyl peroxy); CH2(F)O2.H2O (fluoro methyl peroxy); CH2(F)CH2O2.H2O (2-fluoro ethyl peroxy)] is evaluated using high level ab initio calculations. A wide range of binding energies is predicted for these complexes, in which the difference in binding energies can be explained by examination of the composition of the R group attached to the peroxy moiety. The general trend in binding energies has been determined to be as follows: fluorine approximately alkyl < carbonyl < alcohol. The weakest bound complex, CH3O2.H2O, is calculated to be bound by 2.3 kcal mol-1, and the strongest, the CH2(OH)O2.H2O complex, is bound by 5.1 kcal mol-1. The binding energy of the peroxy radical-water complexes which contain carbonyl and alcohol groups indicates that these complexes may perturb the kinetics and product branching ratios of reactions involving these complexes.  相似文献   

17.
The electronic structure of the mononuclear hydroxo MO3(OH)- and methoxo MO3(OCH3)- Group 6 oxometalate anions (M = Cr, Mo, and W) were examined by photodetachment photoelectron spectroscopy and electronic structure calculations at the density functional and CCSD(T) levels of theory. All of the anions exhibited high electron binding energies (>4.9 eV), with the lowest-energy detachment features arising from oxygen 2p-based orbitals. The combined experimental and theoretical results allowed the change in molecular orbital energy levels to be investigated as a function of metal (Cr, Mo, or W) and ligand (-OH, -OCH3). A number of fundamental thermodynamic properties of the anions and corresponding neutrals were predicted on the basis of the theoretical calculations. The calculations indicate high O-H bond dissociation energies for MO2(OR)(O-H) (R = H, CH3) and MO3(O-H), consistent with their high Br?nsted acidities (just below that of H2SO4 in the gas phase) and the high ionization energies of their conjugate base anions. This suggests that the corresponding radicals should readily abstract H atoms from organic molecules.  相似文献   

18.
The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2'-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.  相似文献   

19.
This work describes the preparation and characterization of a cellulose acetate fiber coated with Al(2)O(3), resulting in the organic-inorganic hybrid Cel/Al(2)O(3). Furthermore, the hybrid was modified by attaching organofunctional groups by reaction with the precursor reagents (RO)(3)Si(CH(2))(3)L (L=NH(2), NH(CH(2))(2)NH(2), NH(CH(2))(2)NH(CH(2))(2)NH(2), and N(2)C(3)H(3) (imidazole)), resulting in Cel/Al(2)O(3)/Si(CH(2))(3)NH(2) (1), Cel/Al(2)O(3)/Si(CH(2))(3)NH(CH(2))(2)NH(2) (2), Cel/Al(2)O(3)/Si(CH(2))(3)NH(CH(2))(2)NH(CH(2))(2)NH(2) (3), and Cel/Al(2)O(3)/Si(CH(2))(3)N(2)C(3)H(3) (4). The amounts of attached organofunctional groups were (in mmol per gram of the material) 1=1.90, 2=1.89, 3=1.66, and 4=1.35. The isotherms of adsorption of FeCl(3), CuCl(2), and ZnCl(2) by Cel/Al(2)O(3)/Si(CH(2))(3)L from ethanol solutions were obtained at 298 K. Accurate estimates of the specific sorption capacities and the heteregeneous stability constants of the immobilized metal complexes were determined with the aid of several computational procedures. It is shown that the sorptional capacities are much less than the concentrations of the attached organofunctional groups. As all sorption isotherms are fitted properly with the Langmuir isotherm equation, the effects of the energetic heterogeneity and the lateral interactions do not affect the chemisorption equilibria. The heterogeneous stability constants of the immobilized complexes are fairly high, which provides efficient removal of the metal ions from solutions by the hybrid materials.  相似文献   

20.
DFT calculations at the B3LYP/6-31G(d,p) level have been performed to explore the substitution reactions of silylenoid H(2)SiLiF with XH(n) hydrides, where XH(n) = CH(4), NH(3), H(2)O, HF, SiH(4), PH(3), H(2)S, and HCl. We have identified a previously unreported reaction pathway on each reaction surface, H(2)SiLiF + XH(n) --> H(3)SiF + LiXH(n-1), which involved the initial formation of an association complex via a five-membered cyclic transition state to form an intermediate followed by the substituted product H(3)SiF with LiXH(n-1) dissociating. These theoretical calculations suggest that (i) there is a very clear trend toward lower activation barriers and more exothermic interactions on going from left to right along a given row in the periodic table, and (ii) for the second-row hydrides, the substitution reactions are more exothermic than for the first-row hydrides and the reaction barriers are lower. The solvent effects were considered by means of the polarized continuum model (PCM) using THF as a solvent. The presence of THF solvent disfavors slightly the substitution reaction. Compared to the previously reported insertions and H(2)-elimination reactions of H(2)SiLiF and XH(n), the substitution reactions should be most favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号