首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The friction and diffusion coefficients of a massive Brownian particle in a mesoscopic solvent are computed from the force and the velocity autocorrelation functions. The mesoscopic solvent is described in terms of free streaming of the solvent molecules, interrupted at discrete time intervals by multiparticle collisions that conserve mass, momentum, and energy. The Brownian particle interacts with the solvent molecules through repulsive Lennard-Jones forces. The decays of the force and velocity autocorrelation functions are analyzed in the microcanonical ensemble as a function of the number N of solvent molecules and Brownian particle mass and diameter. The simulations are carried out for large system sizes and long times to assess the N dependence of the friction coefficient. The decay rates of these correlations are confirmed to vary as N(-1) in accord with earlier predictions. Hydrodynamic effects on the velocity autocorrelation function and diffusion coefficient are studied as a function of Brownian particle mass and diameter.  相似文献   

2.
A hydrodynamic mechanism of interactions of colloidal particles is considered. The mechanism is based on the assumption of tiny background flows in the experimental cells during measurements by Grier et al. Both trivial (shear flow) and nontrivial (force propagation through viscous fluid) effects are taken into account for two colloidal particles near a wall bounding the solvent. Expressions for the radial (attractive or repulsive) forces and the polar torques are obtained. Quantitative estimates of the flow needed to produce the observed strength of attractive force are given; other necessary conditions are also considered. The following conclusion is made: the mechanism suggested most likely is not responsible for the attractive interactions observed in the experiments of Grier et al.; however, it may be applicable in other experimental realizations and should be kept in mind while conducting colloidal measurements of high sensitivity. Several distinctive features of the interactions due to this mechanism are identified.  相似文献   

3.
The friction and adhesion between pairs of materials (silica, alumina, and polytetrafluoroethylene) have been studied and interpreted in terms of the long-ranged interactions present. In ambient laboratory air, the interactions are dominated by van der Waals attraction and strong adhesion leading to significant frictional forces. In the presence of the ionic liquid (IL) ethylammonium nitrate (EAN) the van der Waals interaction is suppressed and the attractive/adhesive interactions which lead to "stiction" are removed, resulting in an at least a 10-fold reduction in the friction force at large applied loads. The friction coefficient for each system was determined; coefficients obtained in air were significantly larger than those obtained in the presence of EAN (which ranged between 0.1 and 0.25), and variation in the friction coefficients between systems was correlated with changes in surface roughness. As the viscosity of ILs can be relatively high, which has implications for the lubricating properties, the hydrodynamic forces between the surfaces have therefore also been studied. The linear increase in repulsive force with speed, expected from hydrodynamic interactions, is clearly observed, and these forces further inhibit the potential for stiction. Remarkably, the viscosity extracted from the data is dramatically reduced compared to the bulk value, indicative of a surface ordering effect which significantly reduces viscous losses.  相似文献   

4.
We determine the free energy of micelle formation for surfactants in a solvent by employing a hybrid semi-grand Monte Carlo simulation scheme in combination with umbrella sampling and configurational bias techniques. We compare results of two surfactant models: one based on Lennard-Jones interactions and one based on the soft repulsive potential that is often used in dissipative particle dynamics (DPD). The free energies of micellization in both models show similar behavior. However, although the critical micelle concentration for the Lennard-Jones systems lies within the experimental range, it is 13 orders of magnitude lower for the soft repulsive model. We discuss the implication for the applicability of soft repulsive potentials for the study of micelle formation.  相似文献   

5.
Millimeter-sized gel particles loaded with camphor and floating at the interface between water and air generate convective flows around them. These flows give rise to repulsive interparticle interactions, and mediate dynamic self-assembly of nonequilibrium particle formations. When the numbers of particles, N, are small, particle motions are uncorrelated. When, however, N exceeds a threshold value, particles organize into ordered lattices. The nature of hydrodynamic forces underlying these effects and the dynamics of the self-assembling system are modeled numerically using Navier-Stokes equations as well as analytically using scaling arguments.  相似文献   

6.
Summary: Molecular dynamic simulation of side chain liquid crystalline elastomer has been carried out. As an initial state a flexible polymer network in a low molecular liquid-crystal (LC) solvent was used. The LC solvent comprises of anisotropic rod-like semiflexible linear molecules (mesogens) composed of particles bonded into the chain by FENE potential. Rigidity of LC molecules was induced by a bending potential. All interactions between nonbonded particles are described by a repulsive Lennard-Jones potential. For the systems with different values of density and order parameter obtained after sufficiently long trajectory the attachment of ends of mesogens to the polymer network was simulated. The kinetic of the process of mesogens attachment to network was studied as well as morphology of attachment. The structural and dynamical behaviour of side chain LC elastomer was studied and compared with systems of polymer network in low molecular LC solvent.  相似文献   

7.
Solvent effects on polymer dynamics and structure are investigated using a mesoscopic solvent model that accounts for hydrodynamic interactions among the polymer beads. The simulation method combines molecular dynamics of the polymer chain, interacting with the solvent molecules through intermolecular forces, with mesoscopic multiparticle collision dynamics for the solvent molecules. Changes in the intermolecular forces between the polymer beads and mesoscopic solvent molecules are used to vary the solvent conditions from those for good to poor solvents. Polymer collapse and expansion dynamics following changes in solvent conditions are studied for homopolymer and block copolymer solutions. The frictional properties of polymers are also investigated.  相似文献   

8.
The traditional view that the physical properties of a simple liquid are determined primarily by its repulsive forces was recently challenged by Berthier and Tarjus, who showed that in some cases ignoring the attractions leads to large errors in the dynamics [L. Berthier and G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009); J. Chem. Phys. 134, 214503 (2011)]. We present simulations of the standard Lennard-Jones liquid at several condensed-fluid state points, including a fairly low density state and a very high density state, as well as simulations of the Kob-Andersen binary Lennard-Jones mixture. By varying the range of the forces via a shifted-forces cutoff, results for the thermodynamics, dynamics, and structure show that the determining factor for getting the correct statics and dynamics is not whether or not the attractive forces per se are included in the simulations. What matters is whether or not interactions are included from all particles within the first coordination shell - the attractive forces can thus be ignored, but only at extremely high densities. The recognition of the importance of a local shell in condensed fluids goes back to van der Waals; our results confirm this idea and thereby the basic picture of the old hole and cell theories for simple condensed fluids.  相似文献   

9.
We present a computationally efficient implementation of hydrodynamic modeling for the evaluation of diffusion tensors of molecules with internal degrees of freedom, adapted to take into account information from linear scaling computations of solvent accessible surfaces implemented in the framework of last generation continuum solvent models. Torsional angles are taken also explicitly into account, while retaining correct hydrodynamic interactions. A comparison with literature data is presented to prove the effectiveness of the approach for a wide range of molecular dimensions and solvent environments.  相似文献   

10.
Results of molecular dynamics simulations are presented for the pair distribution function between nanoparticles in an explicit solvent as a function of nanoparticle diameter and interaction strength between the nanoparticle and solvent. The effect of including the solvent explicitly is demonstrated by comparing the pair distribution function of nanoparticles to that in an implicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the solvent is represented by standard Lennard-Jones particles. The diameter of the nanoparticle is varied from 10 to 25 times that of the solvent for a range of nanoparticle volume fractions. As the strength of the interactions between nanoparticles and the solvent increases, the solvent layer surrounding the nanoparticle is formed which increases the effective radii of the nanoparticles. The pair distribution functions are inverted using the Ornstein-Zernike integral equation to determine an effective pair potential between the nanoparticles mediated by the introduction of an explicit solvent.  相似文献   

11.
The friction between two polyelectrolyte gels carrying the same or opposite sign of charges has been investigated using a rheometer. It is found that the friction was strongly dependent on the interfacial interaction between two gel surfaces. In the repulsive interaction case, especially, the friction was extremely low. The friction behavior is attempted to be described in terms of the hydrodynamic lubrication of the solvent layer between two like-charged gel surfaces, which is formed due to the electrostatic repulsion of the two gel surfaces. From the theoretical analysis (hydrodynamic mechanism), the friction behaviors were explained qualitatively, all of the experimental results, nevertheless, could not be understood well. The viscoelastic feature of the gel and the non-Newtonian behavior of water at the friction interface are considered to be important to elucidate the gel friction.  相似文献   

12.
A trajectory analysis of particles near a micropatterned charged substrate under radial impinging jet flow conditions is presented to investigate the effect of surface charge heterogeneity on particle trajectory and deposition efficiency. The surface charge heterogeneity is modeled as concentric bands of specified width and pitch having positive and negative surface potentials. The flow distribution is obtained using finite element analysis of the governing Navier-Stokes equations. The particle trajectory analysis takes into consideration the hydrodynamic interactions, gravity, van der Waals and electrostatic double layer interactions. The presence of surface charge heterogeneity on the substrate gives rise to an oscillating particle trajectory near the collector surface due to repulsive and attractive forces. As a result of the coupled effects of hydrodynamic and colloidal forces, the particle trajectories and deposition efficiencies are increasingly affected by surface charge heterogeneity as one moves radially away from the stagnation point. The results indicate that it is possible to render collectors with up to 50% favorable surface fraction completely unfavorable by modifying the ratio of the radial to normal fluid velocity. Utilizing the real favorable area fraction of the collector, the patch model expression for calculating the deposition efficiency is modified for impinging jet flow geometry.  相似文献   

13.
We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.  相似文献   

14.
The hydrodynamic interaction between a rising bubble and a sedimenting particle during microbubble flotation is considered. The effects of attractive van der Waals forces and attractive or repulsive electrostatic forces are included. A mathematical model is presented which is used to perform a trajectory analysis and to calculate collision efficiencies between the bubble and particle. It is shown that collision efficiencies and the nature of the bubble-particle interactions are strongly dependent on the relative strengths of the van der Waals and electrostatic forces and on the lengthscales over which these forces act. It is demonstrated that optimal operating conditions can be suggested to achieve efficient microbubble flotation by correctly accounting for the interaction of van der Waals, electrostatic, and hydrodynamic forces. Copyright 1999 Academic Press.  相似文献   

15.
Lin YC  Jen CP 《Lab on a chip》2002,2(3):164-169
In this study, the separation mechanism employed in hydrodynamic chromatography in microchannel devices is analyzed. The main purpose of this work is to provide a methodology to develop a predictive model for hydrodynamic chromatography for biological macromolecules in microchannels and to assess the importance of various phenomenological coefficients. A theoretical model for the hydrodynamic chromatography of particles in a microchannel is investigated herein. A fully developed concentration profile for non-reactive particles in a microchannel was obtained to elucidate the hydrodynamic chromatography of these particles. The external forces acting on the particles considered in this model include the van der Waals attractive force, double-layer force as well as the gravitational force. The surface forces, such as van der Waals attractive force as well as the double-layer repulsive force, can either enhance or hinder the average velocity of the macromolecular particles. The average velocity of the particles decreases with the molecular radius because the van der Waals attractive force increases the concentration of the particles near the channel surface, which is the low-velocity region. The transport velocity of the particles is dominated by the gravity and the higher density enlarges the effect caused by gravity.  相似文献   

16.
We study dynamical properties of ionic species in aqueous solutions of dodecyltrimethylammonium bromide, for several concentrations below and above the critical micellar concentration (cmc). New experimental determinations of the electrical conductivity are given which are compared to results obtained from an analytical transport theory; transport coefficients of ions in these solutions above the cmc are also computed from Brownian dynamics simulations. Analytical calculations as well as the simulation treat the solution within the framework of the continuous solvent model. Above the cmc, three ionic species are considered: the monomer surfactant, the micelle and the counterion. The analytical transport theory describes the structural properties of the electrolyte solution within the mean spherical approximation and assumes that the dominant forces which determine the deviations of transport processes from the ideal behavior (i.e., without any interactions between ions) are hydrodynamic interactions and electrostatic relaxation forces. In the simulations, both direct interactions and hydrodynamic interactions between solutes are taken into account. The interaction potential is modeled by pairwise repulsive 1/r(12) interactions and Coulomb interactions. The input parameters of the simulation (radii and self-diffusion coefficients of ions at infinite dilution) are partially obtained from the analytical transport theory which fits the experimental determinations of the electrical conductivity. Both the electrical conductivity of the solution and the self-diffusion coefficients of each species computed from Brownian dynamics are compared to available experimental data. In every case, the influence of hydrodynamic interactions (HIs) on the transport coefficients is investigated. It is shown that HIs are crucial to obtain agreement with experiments. In particular, the self-diffusion coefficient of the micelle, which is the largest and most charged species in the present system, is enhanced when HIs are included whereas the diffusion coefficients of the monomer and the counterion are roughly not influenced by HIs.  相似文献   

17.
The electrorheological (ER) behavior of pigment suspensions dispersed in a nonaqueous solvent was examined for their application as liquid toners for electrophotography. In electric fields, particles can align into chains along the field vector by dielectric polarization forces and the suspensions undergo a rapid transition from Newtonian fluids to Bingham bodies. However, the migration and deposition of particles can take place by the electrophoretic effect, because charge control agents are added to liquid toners for fast development. The combined effects of dielectric polarization forces, electrophoretic forces, and hydrodynamic forces make rheological behavior very complicated. To simulate the ER behavior of liquid toners in reprographic processes, viscosity measurements were carried out in electrodes with a honeycomb pattern. Nonuniform electric fields enhance the dipole-dipole interactions between particles and give rise to a striking ER effect. Based on measurements in honeycomb pattern electrodes, new ER toners were developed which can reproduce images with high quality.  相似文献   

18.
We analyzed the interaction between chemically grafted polysaccharide layers in aqueous solutions. To fabricate such layers, an end-terminated dextran silane coupling agent was synthesized and the polydextran was grafted to oxidized silicon wafers and to silica particles. This resulted in the formation of a 28 nm thick layer (in air) and a grafted amount of 40 mg/m(2) as determined by ellipsometry. The physical properties of the grafted layer were investigated in aqueous solutions by atomic force microscope imaging and colloidal probe force measurements. Surface and friction forces were measured between one bare and one polydextran coated silica surface. A notable feature was a bridging attraction due to affinity between dextran and the silica surface. Surface interactions and friction forces were also investigated between two surfaces coated with grafted polydextran. Repulsive forces were predominant, but nevertheless a high friction force was observed. The repulsive forces were enhanced by addition of sodium dodecyl sulfate (SDS) that associates with the tethered polydextran layers. SDS also decreased the friction force. Our data suggests that energy dissipation due to shear-induced structural changes within the grafted layer is of prime importance for the high friction forces observed, in particular deformation of protrusions in the surface layer.  相似文献   

19.
In the commercial bitumen extraction operation, dynamic and static interaction forces between bitumen drops in water determine the likelihood of desirable bitumen coalescence at different process stages. These dynamic and static forces were measured using colloidal particle scattering and hydrodynamic force balance techniques, respectively. In the former technique, dynamic interactions are studied through droplet-droplet collision trajectory measurement. In the latter technique, the static attractive forces between droplets are determined when a doublet is separated with a known and adjustable hydrodynamic force. The dynamic force measurement implies the presence of rigid chains on bitumen surfaces. The mean chain lengths for deasphalted bitumen at pH 7, whole bitumen at pH 7, and whole bitumen at pH 8.5 are 50, 78, and 41 nm, respectively. However, the static force measurement indicates much shorter mean chain lengths (<9 nm) in these three bitumen systems. Shorter chain length indicates weaker repulsive force. This finding of a much weaker repulsion between bitumen droplets under static conditions has important implications on the commercial bitumen extraction operation.  相似文献   

20.
Theoretical expressions are developed to describe self-diffusion in submonolayer colloidal fluids that require only equilibrium structural information as input. Submonolayer colloidal fluids are defined for the purpose of this work to occur when gravity confines colloids near a planar wall surface so that they behave thermodynamically as two dimensional fluids. Expressions for self-diffusion are generalized to consider different colloid and surface interaction potentials and interfacial concentrations from infinite dilution to near fluid-solid coexistence. The accuracy of these expressions is demonstrated by comparing self-diffusion coefficients predicted from Monte Carlo simulated equilibrium particle configurations with standard measures of self-diffusion evaluated from Stokesian Dynamics simulated particle trajectories. It is shown that diffusivities predicted for simulated equilibrium fluid structures via multibody hydrodynamic resistance tensors and particle distribution functions display excellent agreement with values computed from mean squared displacements and autocorrelation functions of simulated tracer particles. Results are obtained for short and long time self-diffusion both parallel and normal to underlying planar wall surfaces in fluids composed of particles having either repulsive electrostatic or attractive van der Waals interactions. The demonstrated accuracy of these expressions for self-diffusion should allow their direct application to experiments involving submonolayer colloidal fluids having a range of interaction potentials and interfacial concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号