首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of polymers confined between surfaces is studied using computer simulation and a density functional approach. The simple model system considers the polymer molecule as a pearl necklace of freely jointed hard spheres, having attractions among the beads, confined between attractive surfaces. This approach uses the universality of the free-energy functional to obtain the self-consistent field required in the single chain simulation. The second-order direct correlation function for the uniform bulk fluid required as input has been calculated from the reference interaction site model integral equation theory using mean spherical approximation. The theoretical results are shown to compare well with the Monte Carlo simulation results for varying densities, chain lengths, and with different attractive interaction parameters. The simulation results on the conformational properties give important indications regarding the behavior of chains as they approach the surfaces.  相似文献   

2.
A density functional theory is presented to study the effect of attractions on the structure of polymer solutions confined between surfaces. The polymer molecules have been modeled as a pearl necklace of freely jointed hard spheres and the solvent as hard spheres, both having Yukawa-type attractions and the mixture being confined between attractive Yukawa-type surfaces. The present theory treats the ideal gas free energy functional exactly and uses weighted density approximation for the hard chain and hard sphere contributions to the excess free energy functional. The attractive interactions are calculated using the direct correlation function obtained from the polymer reference interaction site model theory along with the mean spherical approximation closure. The theoretical predictions on the density profiles of the polymer and the solvent molecules are found to agree quite well with the Monte Carlo simulation results for varying densities, chain lengths, wall separations, and different sets of interaction potentials.  相似文献   

3.
Density functional theory is applied to study properties of fully detailed, realistic models of polyethylene liquids near surfaces and compared to results from Monte Carlo simulations. When the direct correlation functions from polymer reference interaction site model (PRISM) theory are used as input, the theory somewhat underpredicts the density oscillations near the surface. However, good agreement with simulation is obtained with empirical scaling of the PRISM-predicted direct correlation functions. Effects of attractive interactions are treated using the random-phase approximation. The results of theoretical predictions for the attractive system are also in reasonable agreement with simulation results. In general, the theory performs best when the wall-polymer interaction strength is comparable to polymer-polymer interactions.  相似文献   

4.
Density profiles for a homopolymer melt near a surface are calculated using a random-walk polymeric density functional theory, and compared to results from molecular dynamics simulations. All interactions are of a Lennard-Jones form, for both monomer-monomer interactions and surface-monomer interactions, rather than the hard core interactions which have been most investigated in the literature. For repulsive systems, the theory somewhat overpredicts the density oscillations near a surface. Nevertheless, near quantitative agreement with simulation can be obtained with an empirical scaling of the direct correlation function. Use of the random phase approximation to treat attractive interactions between polymer chains gives reasonable agreement with simulation of dense liquids near neutral and attractive surfaces.  相似文献   

5.
6.
Density functional theory of homopolymer mixtures confined in a slit   总被引:1,自引:0,他引:1  
A density functional theory (DFT) is developed for polymer mixtures with shorted-ranged attractive interparticle interactions confined in a slit. Different weighting functions are used separately for the repulsive part and the attractive part of the excess free energy functional by applying the weighted density approximation. The predicted results by DFT are in good agreement with the corresponding simulation data indicating the reliability of the theory. Furthermore, the center-of-mass profiles and the end-to-end distance distributions are obtained by the single chain simulation; the predictions also agree well with simulation data. The results reveal that both the attraction of the slit wall and the temperature has stronger effect on longer chains than on shorter ones because the intrasegment correlation of chains increases with increasing chain length.  相似文献   

7.
The authors use the analytical equation of state obtained by the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999)] to study the phase diagram of fluids with discrete spherical potentials formed by a repulsive square-shoulder plus an attractive square-well interaction (SS+SW). This interaction is characterized by the usual energy and size parameters plus three dimensionless parameters: two of them measuring the widths of the SS and the SW and the third the relative height of the SS. The matter of interest is that, for certain values of the interaction parameters, the SS+SW systems exhibit more than one first-order fluid-fluid transition. The evidence that several real substances (such as water, phosphorus, carbon, and silica, among others) exhibit an extra liquid-liquid transition has drawn interest into the study of interactions responsible for this behavior. The simple SS+SW fluid is one of the systems that, in spite of being spherically symmetric, shows multiple fluid-fluid transitions. In this work the authors investigate systematically the effect on the phase diagram of varying the interaction parameters. The use of an analytical free-energy equation gives a clear thermodynamic picture of the emergence of different types of critical points, throwing new light on the phase behavior of these fluids and thus clarifying previous results obtained by other techniques. The interplay of attractive and repulsive forces with several scale lengths produces very rich phase diagrams, including cases with three critical points. The region of the interaction-parameter space where multiple critical points appear is mapped for various families of interactions.  相似文献   

8.
The fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied by means of Monte Carlo computer simulations and two theoretical approximations, namely, the discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) fluids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is presented. We confirm Noro-Frenkel's extended law of scaling according to which the properties of a short-ranged fluid at a given temperature and density are independent of the detailed form of the interaction, but just depend on the value of the second virial coefficient. By mapping the HCAY and AO fluids onto an equivalent square-well fluid of appropriate range at the critical point we show that the critical temperature as a function of the effective range is independent of the interaction potential, i.e., all curves fall in a master curve. Our findings are corroborated with recent experimental data for lysozyme proteins.  相似文献   

9.
Because of the increasing interest in studying the phenomenon exhibited by charge-stabilized colloidal suspensions in confining geometry, we present a density functional theory (DFT) for a hard-core multi-Yukawa fluid. The excess Helmholtz free-energy functional is constructed by using the modified fundamental measure theory and Rosenfeld's perturbative method, in which the bulk direct correlation function is obtained from the first-order mean spherical approximation. To validate the established theory, grand canonical ensemble Monte Carlo (GCMC) simulations are carried out to determine the density profiles and surface excesses of multi-Yukawa fluid in a slitlike pore. Comparisons of the theoretical results with the GCMC data suggest that the present DFT gives very accurate density profiles and surface excesses of multi-Yukawa fluid in the slitlike pore as well as the radial distribution functions of the bulk fluid. Both the DFT and the GCMC simulations predict the depletion of the multi-Yukawa fluid near a nonattractive wall, while the mean-field theory fails to describe this depletion in some cases. Because the simple form of the direct correlation function is used, the present DFT is computationally as efficient as the mean-field theory, but reproduces the simulation data much better than the mean-field theory.  相似文献   

10.
The effect of varying wall-particle and particle-particle interactions on the density profiles near a single wall and the solvation forces between two walls immersed in a fluid of particles is investigated by grand canonical Monte Carlo simulations. Attractive and repulsive particle-particle and particle-wall interactions are modeled by a versatile hard-core Yukawa form. These simulation results are compared to theoretical calculations using the hypernetted chain integral equation technique, as well as with fundamental measure density functional theory (DFT), where particle-particle interactions are either treated as a first order perturbation using the radial distribution function or else with a DFT based on the direct-correlation function. All three theoretical approaches reproduce the main trends fairly well, but exhibit inconsistent accuracy, particularly for attractive particle-particle interactions. We show that the wall-particle and particle-particle attractions can couple together to induce a nonlinear enhancement of the adsorption and a related "repulsion through attraction" effect for the effective wall-wall forces. We also investigate the phenomenon of bridging, where an attractive wall-particle interaction induces strongly attractive solvation forces.  相似文献   

11.
Polarizabilities and second hyperpolarizabilities of polyacetylene and a hydrogen chain are evaluated by density functional theory (DFT) using a hybrid generalized gradient approximation functional with correct long-range electron-electron interactions. The well known catastrophic overestimate of the hyperpolarizabilities for molecular systems of enhanced length is corrected by the two-electron repulsion operator decomposition technique, integrating the distance-dependent nonlocal exchange effects for long-range interaction, while neither the asymptotically corrected exchange functional for long-range interaction nor ordinary hybrid methods seem to be capable of overcoming the serious drawback of the DFT in polarizability/hyperpolarizability evaluation.  相似文献   

12.
Density functional theory is used to calculate the surface tension of planar and slightly curved surfaces, which can be written as gamma(R)=gamma(infinity)(1-2delta(infinity)R), where R is the radius of curvature of the surface. Calculations are performed for a Lennard-Jones fluid, split into a hard-sphere repulsive potential and an attractive part. The repulsive part is treated using the local density approximation. The attractive part is treated using a high temperature approximation (HTA) in which the pair correlation function is approximated by the Percus-Yevick pair correlation function of a uniform hard-sphere fluid evaluated at a position-dependent average density. An expression relating the Tolman length delta(infinity) to the density profile of the planar surface is derived. Numerical results are presented for the planar surface tension gamma(infinity) and for delta(infinity) and are compared with those using mean field theory (MFT) and with those using the square-gradient approximation. Values for gamma(infinity) using the HTA are 30%-40% higher than those using MFT. Values for delta(infinity) using the HTA are around -0.1 (in units of the Lennard-Jones parameter sigma) and only weakly dependent on temperature. These values are less negative than the values from MFT. The square-gradient approximation gives reasonable estimates of the more accurate nonlocal results for both the MFT and the HTA.  相似文献   

13.
The CH3XC=S...S (X = H, HO, HS, PH2, CH3) bonding types are investigated using the second order Møller-Plesset perturbation approximation with the cc-pVDZ basis set. Electrostatic density potential maps of CH3XC=S (X = H, HO, HS, PH2, CH3) are generated at the MP2/cc-pVDZ level of theory. The interaction energy and topological property are theoretically encompassed for the five complexes. Electrostatic density potential maps of five monomers are generated for the determination of attractive interaction sites. There are different misshaped electron clouds. The red-shifting character is obtained for the CH3XC=S...S (X = H, HO, HS, PH2) interaction. For all complexes the S...S bonds are typical closedshell interactions, and the topological properties of the S...S bond fall short of three criteria for the existence of the hydrogen bond. Theoretical values are in very good agreement with the experimental results.  相似文献   

14.
We report the performance of a classical density functional theory (CDFT) in the competition for the solvation free-energy category of the SAMPL4 blind prediction event. The theoretical calculations were carried out with the TIP3P water model and different combinations of solute configurations and molecular force fields. In comparison with the experimental data, the blind test yields an average unsigned error of 2.38 kcal/mol and the root mean square deviation of 2.99 kcal/mol. Whereas these numbers are significantly larger than the best results from explicit-solvent MD simulations, we find that the theoretical performance is sensitive to both the molecular force fields and solute configurations and that a comparable level of accuracy can be achieved by a judicious selection of the solute configurations and the force-field parameters. Most importantly, CDFT reduces the computational cost of MD simulation by almost 3 orders of magnitude, making it very attractive for large-scale hydration free-energy calculations (e.g., screening the aqueous solubility of drug-like molecules).  相似文献   

15.
Polyatomic density functional theory is applied to a binary polymer blend. The polymer reference interaction site model (PRISM) liquid state theory provides the homogeneous state correlation functions necessary for the application of density functional theory. An effective chi parameter can be recognized from the density functional expression; however, the phase separation criteria does not depend solely upon the chi parameter, rather it depends upon various combinations of the species-dependent direct correlation functions of the blend. The Flory-Huggins chi parameter along with the associated phase diagram is obtained when the monomer volumes of the blend species are equal and for a range of monomer-monomer attractive interactions. Calculations are performed both with and without the assumption of incompressibility. The density functional theory along with the PRISM determined “input” predict that an isotopic polymer blend shows an upper critical solution temperature (UCST) phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
We analyze the depletion potential between large spheres in a multicomponent mixture of dense small spheres (up to seven components) using the integral equation theory (IET), in which semiempirical bridge functions are incorporated, and the insertion approach within the framework of density functional theory (DFT). The diameters of the small spheres considered are in the range of d(S)-5d(S). The results from the IET and DFT are in close agreement with each other. The depletion potential in the mixture is substantially different from that in a one-component system of dense small spheres with diameter d(S). In comparison with the latter, the former possesses in general a less pronounced oscillatory structure, and the free-energy barrier for large spheres to overcome before reaching the contact is significantly reduced. This tendency can be enhanced as the number of components increases. In a several-component mixture of small spheres whose diameters are suitably chosen and in which the packing fractions of the components share the same value, the depletion potential is essentially short ranged and attractive and possesses a sufficiently large, negative value at the contact.  相似文献   

18.
This paper reviews the application of the extended random sequential adsorption (RSA) approaches to the modeling of colloid-particle deposition (irreversible adsorption) on surfaces precovered with smaller particles. Hard (noninteracting) particle systems are discussed first. We report on the numerical simulations we performed to determine the available surface function, jamming coverage, and pair-correlation function of the larger particles. We demonstrate the effect of the particle size ratio and the small particle surface coverage. We found that the numerical results were in reasonable agreement with the formula stemming from the scaled-particle theory in 2D with a modification for the sphere geometry. Next, we discuss three approximate models of adsorption allowing electrostatic interaction of colloid particles at a charged interface, employing a many-body superposition approximation. We describe two approaches of the effective hard-particle approximation next. We demonstrate the application of the effective hard-particle concept to the bimodal systems and present the effect of electrolyte concentration on the effective particle size ratio. We present the numerical results obtained from the theoretical models of soft-particle adsorption at precovered surfaces. We used the effective hard-particle approximation to determine the corresponding simpler systems of particles, namely the system of hard spheres and the system of hard discs at equilibrium. We performed numerical computations to determine the effective minimum particle surface-to-surface distance, available surface function, jamming coverage, and pair-correlation function of the larger particles at various electrolyte ionic strengths and particle size ratios. The numerical results obtained in the low-surface coverage limit were in good agreement with the formula stemming from the scaled-particle theory with a modification for the sphere geometry and electrostatic interaction. We compared the results of numerical computations of the effective minimum particle surface-to-surface distance obtained using the 2D, 3D, and curvilinear trajectory model. The results obtained with the 3D and curvilinear trajectory models indicate that large-particle/substrate attractive interaction significantly reduces the kinetic barrier to large, charged-particle adsorption at a surface precovered with small, like-charged particles. The available surface function and jamming-coverage values predicted using the simplified 3D and the more sophisticated curvilinear trajectory models are similar, while the results obtained with the 2D model differ significantly. The pair-correlation function suggests different structures of monolayers obtained with the three models. Unlike the three models of the electrostatic interaction, both effective hard-particle approximations give almost identical results. Results of this research clearly suggest that the extended RSA approaches can fruitfully be exploited for numerical simulations of colloid-particle adsorption at precovered surfaces, allowing the investigation of both hard and soft-particle systems.  相似文献   

19.
A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on Rosenfeld's perturbative method. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall. Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present density functional theory is better than those of the modified version of the Lovett-Mou-Buff-Wertheim and other density functional theories. The present theory is simple in form and computationally efficient. It predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号