首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For further evaluation of photoemission properties of argon ion bombarded rhenium-silicon thin films pure element Re(21 nm) / Si(39 nm) / Re(21 nm) layer sandwiches were investigated on Si(111) substrates. TEM cross sectioning revealed abrupt interfaces between the polycrystalline Re layers and the amorphous Si layer in the as-deposited sample. In XPS sputter depth profiling the interfaces were severely broadened. This is not just a result of the finite electron escape depth together with atomic mixing and preferential sputtering which was demonstrated with the dynamic Monte Carlo simulation program T-DYN, but mainly caused by topographic effects and silicide formation. Factor analysis of XPS spectra results in two Re-Si principal components which can be ascribed to silicide bonding. Accordingly the valence band changes are caused by different bonding configurations. Bombardment-induced silicide formation is proved by TEM investigations of a selected cross-sectioned sandwich. Due to preferential bombardment-induced effects Re2Si is formed at the Re/Si interfaces in contrast to the ReSi2 growth on thermal heating. This is discussed in terms of the interface composition and the effective heat of formation (EHF) model. Received: 6 September 1998 / Revised: 17 December 1998 / Accepted: 31 January 1999  相似文献   

2.
Epitaxial growth of defect free metal silicides with high thermal stability is important to ultra large scale integration devices (ULSI)[1]. Cobalt silicide has been used as an interconnect in CMOS devices due to its low resistivity and good thermal stability[2] and excellent lattice match between cobalt silicide and silicon[3,4]. In the present work, we have investigated epitaxial growth of ultra-thin cobalt layer (ca. 10 Å) by electron beam evaporation of cobalt on Si(111) (7×7) surface followed by thermal annealing up to 700℃ in UHV system. The morphologies and the surface structures of epitaxial silicide formation were investigated by using scanning tunneling microscopy (STM). Adlayer structures of Co silicide after annealing were observed to coexist as the closely and loosely packed clusters at 230℃ separated by a boundary. A new structure with ring-like clusters has (l×l) configuration with 3.5 A spacing between hollows of vicinal clusters at 400℃. Si-rich CoSi2 surfaces terminated by Si bilayers showed (2×2) structures after annealing at 480℃, in which Si-rich CoSi2 clusters were observed to be very mobile at room temperature. As the surface was annealed to above 500℃, The domain island became regular triangles, where atomic resolution of the l×l surface of CoSi2(111) were readily discernable. CoSi2(111) surface is suggested to be terminated by a Si-bilayer.  相似文献   

3.
1.5 Ni wt %/Al2O3 catalysts have been prepared by incipient wetness impregnation using [Ni(diamine)x(H2O)(6-2x)]Y2 precursors (diamine = 1,2-ethanediamine (en) and trans-1,2-cyclohexanediamine (tc); x = 0, 1, and 2; Y = NO3- and Cl-), to avoid the formation, during calcination, of difficult-to-reduce nickel aluminate. N2 was chosen for thermal treatment to help reveal and take advantage of the reactions occurring between Ni2+, ligands, counterions, and support. In the case of [Ni(en)2(H2O)2]Y2 salts used as precursors, in situ UV-vis and DRIFT spectroscopies show that after treatment at 230 degrees C Ni(II) ions are grafted to alumina via two OAl bonds and that the diamine ligands still remain coordinated to grafted nickel ions but in a monodentate way, bridging the cation with the alumina surface. With Y = Cl-, the chloride counterions desorb as hydrogen chloride, and hydrogen released upon decomposition of the en ligands is able to reduce a fraction of nickel ions into metal as evidenced by XPS. In contrast, with Y = NO3-, compounds such as CO or NO are formed during thermal treatment, indicating that nitrate ions burn the en ligands. After thermal treatment at 500 degrees C, a surface phase containing Ni(II) ions forms, characterized by XPS and UV-vis spectroscopy. Temperature-programmed reduction shows that these ions can be quantitatively reduced to the metallic state at 500 degrees C, in contrast with the aluminate obtained when the preparation is carried out from [Ni(H2O)6]2+, which is reduced only partly at 950 degrees C. On the other hand, a total self-reduction of nickel complexes leading to 2-5-nm metal particles is obtained upon thermal treatment via the hydrogen released by a hydrogen-rich ligand such as tc, whatever the Y counterion. An appropriate choice of the ligand and the counterion allows then to obtain selectively Ni(II) ions or a dispersed reduced nickel phase after treatment in N2, as a result of the reactions occurring between the chemical partners present on alumina.  相似文献   

4.
This study deals with the quantitative assessment of the coverage and thickness of Ni silicide films formed during annealing of SiC substrates with sputtered thin films of Ni. The analytical approach involves the use of XPS and depth profiling by means of successive ion etchings and XPS analyses. For either 3 or 6 nm initial Ni film thickness, a 10 nm Ni2Si product is formed. On top of this product, the C released is accumulated in a very thin (1–2 nm) film. In neither case, the Ni2Si covers the whole surface, although the coverage is almost complete (~90%) in the latter case. For the greater initial Ni‐film thickness of 17 nm, the thickness of the Ni2Si product corresponds well to the value of 25 nm expected from the Ni/Ni2Si stoichiometric relationship. This thickness is significantly greater than a critical level and the film covers the whole surface. Carbon is similarly accumulated in a very thin layer on the top surface, although the major part of C (~70%) is found inside the main reaction product layer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
《Solid State Sciences》2012,14(8):1133-1140
The solid state reaction between U(Mo) and Si, leading to the formation of silicides, has been studied using in-situ X-ray Diffraction. Samples were prepared by sputter depositing Si in thin layers on U(Mo) substrates (8 wt% Mo) and vice versa. In a similar way the reaction between U(Mo) and Al has been studied using U(Mo) substrates covered with a thin layer of Al. The samples were heated to temperatures up to 950 °C in a static purified helium atmosphere. Even though the measurements were hampered by the undesired oxidation of uranium, the formation of various silicides and aluminides could be observed. Kissinger analysis on ramp anneals with ramp rates of 0.2, 0.5, 1 and 3 °C/s have been performed to investigate the kinetics of the formed silicides. Using this method, the apparent activation energy for the different silicide formation reactions was deduced. Using the effective heat of formation rule, a prediction was made on the first phase formed and the subsequent phase sequence. A good agreement was found between the measurements and prediction.  相似文献   

6.
A singly charged hydrocarbon ion CH(x) (+) (x=0,1,2,3,4) was extracted from an electron bombardment type ion source using methane as the reagent gas and irradiated onto the Si(100) surface at glancing angle. Scattered ion spectrometry using an electrostatic energy analyzer revealed that H(+), H(2) (+), and H(3) (+) ions were clearly formed at the scattering angle of 15 degrees , associated with dissociative collisions of hydrocarbon ion species of incidence energy of 1000 eV. The formation of H(3) (+) was tentatively interpreted as resulting from combination of excited atomic hydrogen produced by dissociative collisions of CH(4) (+) ions with Si(100) surface.  相似文献   

7.
The gas-phase ion chemistry of propene-ammonia and silane-propene-ammonia mixtures was studied by ion trap mass spectrometry. As far as the binary mixture is concerned, the effect of different molar ratios of the reactants on the trend of ion species formed was evaluated, the ion-molecule reaction processes were identified and the rate constants for the main processes were measured. The results were compared with the collisional rate constants to determine the reaction efficiencies. In the ternary silane-propene-ammonia mixture the mechanisms of formation of Si(m)C(n)N(p)H(q)(+) clusters were elucidated and the rate constants of the most important steps were measured. For some species, selected by double isolation (MS/MS), the low abundance of the ions allowed us to determine the reaction paths but not the rate constants. Ternary ions are mainly formed by reactions of Si(m)C(n)H(q)(+) ions with ammonia, whereas a minor contribution comes from reactions of Si(m)N(p)H(q)(+) ions with propene. On the other hand, the C(n)N(p)H(q)(+) ions showed a very low reactivity and no step leading to ternary ion species was identified. The formation of hydrogenated ternary ions with Si, C and N has a basic importance in relation to their possible role as precursors of amorphous silicon carbides doped with nitrogen obtained by deposition from silane-propene-ammonia mixtures properly activated.  相似文献   

8.
刘冰  龚正烈 《应用化学》1999,16(1):80-82
由于激光具有高能量密度、高单色性以及良好的相干性,在表面处理技术中的应用越来越广泛.在金属、半导体和高聚物基体上,从水溶液进行激光诱导的化学沉积引起了人们的极大注意,这种工艺在微电子电路及器件上有广泛的应用前景.与传统的化学镀相比,它具有明显的优越性...  相似文献   

9.
The reaction mechanism of ethanol dehydration over SAPO-34 zeolite is investigated by using solid-state NMR spectroscopy. SAPO-34 zeolites with different Si contents are prepared and their acidities are characterized by NMR experiments. The higher content of stronger Brønsted acid sites is correlated to the higher Si content. The adsorption of ethanol on the Brønsted acid sites in SAPO-34 leads to the formation of frustrated Lewis pairs(FLPs). Surface ethoxy species is observed by the dehydration of the FLP sites at room temperature, which can be further converted into ethene products. The decomposing of diethyl ether over Brønsted acid sites is responsible for the formation of ethoxy species at higher reaction temperatures. Triethyloxonium ions are formed in the reaction. A plausible reaction mechanism is proposed for the dehydration of ethanol over SAPO-34.  相似文献   

10.
X‐ray photoelectron spectroscopy was used to investigate thermal stability of HfO2 on SiO2/Si substrate prepared by atomic layer deposition, followed by annealing at different temperature. Hf silicate and Hf silicide are formed at the interface of HfO2 and SiO2 during deposition. The Hf silicide disappears, while the amount of the Hf silicate is intensified after post‐deposition annealing treatment at 400 °C. Phase separation of the Hf silicate layer occurs when the annealing temperature is over 400 °C, resulting in the Hf silicate decomposition into Si and Hf oxides. Moreover, crystallization at high temperature leads to grain boundaries formation, which deteriorates the gate leakage current, as observed by the electrical measurements. The similar annealing temperature dependence of both internal electric field and the amount of Hf silicate implies that the Hf silicate plays a key role in building up the internal electric field, which is attributed to generation of oxygen vacancies (Vo) in the Hf silicate layer. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The Cu? Si interface was studied by electron momentum spectroscopy. A thick disordered interface is formed if one material is deposited on the other. Electron momentum spectroscopy measures intensity as a function of binding energy and target electron momentum. Momentum resolution is demonstrated to be very helpful in interpreting the data, even for these disordered interfaces. The interface layer has a well‐defined electronic structure, different from either Si or Cu, and consistent with silicide formation. Information is obtained about the total bandwidth of the interface compound, effective Brillouin zone size and Fermi radius. No clear differences are observed in the electronic structure of the interface layer for Si deposited on Cu or Cu deposited on Si. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Until recently hydride generation (HG) technique had been applied to only a limited number of elements. In attempts to extend the technique to cadmium, Guo and Guo found that the presence of thiourea together with cobalt enhanced the signal intensity of the Cd volatile species. This finding was repeated and confirmed by many authors. Moreover, Ga and Si, Fe and Ni were used to improve the sensitivity for Cd determination. Recently, the vapour generation of Zn species was performed using an intermittent flow reactor by Guo and Guo,it was found that Ni and Co ions greatly enhanced the signal intensity of zinc. Early in 1984,Yan and co-works reported that the addition of hydride-forming elements, especially tellurium, "accelerated" the formation of thallium hydride rapidly, and suggested a complex hydride was formed. According to these reports, it seems that the addition of certain foreign ions has a positive effect to such elements as Cd, Zn, and Tl, which form unstable hydrides. But the mechanism of the effect of these foreign ions remains unexplained.  相似文献   

13.
Swift heavy ion (SHI) induced modification at metal/Si interfaces has emerged as an interesting field of research due to its large applications. In this study, we investigate SHI‐induced mixed molybdenum silicide film with ion fluences. The molybdenum thin films were deposited on silicon substrates using e‐beam evaporation at 10?8 torr vacuum. Thin films were irradiated with Au ions of energy 120 MeV to form molybdenum silicide. The samples were characterized by grazing incidence X‐ray diffraction (GIXRD) technique for the identification of phase formation at the interface. Rutherford backscattering spectrometry (RBS) was used to investigate the elemental distribution in the films. The mixing rate calculations were made and the diffusivity values obtained lead to a transient melt phase formation at the interface according to thermal spike model. Irradiation‐induced effects at surface have been observed and roughness variations at the surface were calculated using atomic force microscopy (AFM) technique. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
贮氢合金表面处理改善Ni/MH电池1C充放电性能   总被引:4,自引:0,他引:4  
研究了贮氨合金两种表面化学处理方法对MH电极活化性能及Ni/MH电池IC充放电性能的影响:第一种处理方法是贮氢合金在6th。l·L-’KOH溶液中80T处理sh,第二种处理方法是在含有0.04mol·L-‘KBH4的6mol·L’‘KOH溶液中80t处理sh.通过MH电极的放电容量、充放电过程中电极极化和电化学阻抗谱测试评价了上述化学处理对电极活化性能的影响.电子探针表面分析表明化学处理后贮氢合金表面由于铝元素的优先溶解形成一层具有较高电催化活性的富镍表面层,它是改善电极活化性能的主要原因·以处理的贮氨合金为负极材料的Ni/MH电池具有较高IC充放电循环寿命和1.ZV以上放电容量.  相似文献   

15.
In the present study, a double bilayer of a Ni/Ti thin film was investigated. A nanoscale NiTi thin film is deposited in a Ni–Ti–Ni–Ti manner to form a double‐bilayer structure on a Si(100) substrate. Ni and Ti depositions were carried out by using d.c. and r.f. power, respectively, in a magnetron sputtering chamber. Four types of bilayers are formed by varying the deposition time of each layer (i.e. 15, 20, 25, and 30 min). The as‐deposited amorphous thin films were annealed at 300, 400, 500, and 600 °C for 1 h to achieve the diffusion in between the layers. Microstructures were analyzed using field‐emission scanning electron microscope and high‐resolution transmission electron microscope. It was found that, with the increase in annealing temperature from 300 to 600 °C, the diffusion at the interface and atomic migration on the surface increase. Cross‐sectional micrographs exhibited the interdiffusion between the two‐layer constituents, especially at higher temperatures, which resulted in diffusion patches along the interface. Phase analyses, performed by grazing incidence X‐ray diffraction, showed the formation of intermetallic compounds with some silicide phases that enhance the mechanical properties. Nanoindentation and atomic force microscopy were carried out to know the mechanical properties and surface profiles of the films. The surface finish is better at higher annealing temperatures. It was found that for annealing temperatures varying from 300 to 600 °C, the increase in annealing temperature resulted in a gradual increase in atomic‐cluster coarsening with improved adatom mobility. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The interface diffusion and chemical reaction between a PZT (PbZrxTi1-xO3) layer and a Si(111) substrate during the annealing treatment in air have been studied by using XPS (X-Ray Photoelectron Spectroscopy) and AES (Auger Electron Spectroscopy). The results indicate that the Ti element in the PZT precursor reacted with residual carbon and silicon, diffused from the Si substrate, to form TiCx, TiSix species in the PZT layer during the thermal treatment. A great interface diffusion and chemical reaction took place on the interface of PZT Si also. The silicon atoms diffused from silicon substrate onto the surface of PZT layer. The oxygen atoms, which came from air, diffused into silicon substrate also and reacted with Si atoms to form a SiO2 interlayer between the PZT layer and the Si (111) substrate. The thickness of SiO2 interlayer was proportional to the square root of treatment time. The formation of the SiO2 interlayer was governed by the diffusion of oxygen in the PZT layer at low annealing tempera  相似文献   

17.
Extended coordination frameworks containing the pyrimidin-4-olate ligand (4-pymo) and Zn(II) and Ni(II) metal ions have been obtained by solid state reactions and have been fully characterized by spectroscopic, thermal, and magnetic measurements and by ab initio XRPD. The reaction of ZnO and 4-Hpymo at 140 degrees C gives a solid microcrystalline phase, Zn(4-pymo)(2) (1). Its 3D framework contains Zn(II) centers linked by 4-pymo ligands acting in two different coordination modes, namely, the N,N'- and the N,O-exo-bidentate ones, which result in a pseudotetrahedral ZnN(3)O chromophore. Thermal treatment of the "molecular" Ni(4-pymo)(2)(H(2)O)(4) complex (2) above 140 degrees C gives an anhydrous amorphous material analyzing as Ni(4-pymo)(2) (3a). Further heating of this material above 388 degrees C results in the formation of the microcrystalline layered Ni(4-pymo)(2) species (3b), in which Ni(II) centers are bridged by N,O-exo-bidentate 4-pymo ligands (assisted by longer Ni.N contacts). The thermal dependence of the magnetic susceptibility has been studied for the paramagnetic species 2 and 3a. 2 shows a weak antiferromagnetic interaction [J = -0.313(5) cm(-)(1)] transmitted through the multiple H-bonding interactions between the exocyclic pyrimidine and water oxygen atoms coordinated to the metal centers. 3a behaves as a 2D Heisenberg antiferromagnet with J = -4.11(3) cm(-)(1).  相似文献   

18.
The present paper reports the investigation of surface morphology, elemental composition, phase changes and field emission properties of Si ion irradiated nickel (Ni) and titanium (Ti). The Ni and Ti targets have been irradiated with 500 keV Si ions generated by Pelletron accelerator at various fluences ranging from 6.9 × 1013 to 77.1 × 1013 ions/cm2. Stopping range of ions in matter analysis revealed higher values of electronic stopping and sputtering yield for Ni as compared with Ti. For both irradiated metals, electronic energy loss dominant over the nuclear stopping. The growth of induced surface structures have been analysed by using field emission scanning electron microscopy (FESEM) analysis. In case of Ni, as the ion fluence increases from 6.9 × 1013 to 65.8 × 1013 ions/cm2, the formation of spherical particulates, agglomers and sputtering is observed. Although in the case of Ti, with the increase of Si ion fluence from 11.6 × 1013 to 77.1 × 1013 ions/cm2, the formation of irregular-shaped particulates along with crater and sputtered channels is observed. X-ray diffraction (XRD) analysis shows that no new phase is identified. However, a significant increase in peak intensity is observed with increasing ion fluence. The variation in crystallite size and dislocation line density is also observed as a function of Si ion fluence. Fourier transform infrared spectroscopy analysis shows that no bands are formed after the Si ion irradiation. Field emission properties of ion-structured Ni and Ti are well correlated with the growth of surface structures observed by SEM and dislocation line density evaluated by XRD analysis.  相似文献   

19.
Structural signatures: The analysis of Si-Si and Si-Li connectivities by solid-state NMR spectroscopy allows the different types of silicon clusters to be discriminated in the model lithium silicide compound Li(12)Si(7) (see picture, Si clusters red and blue, Li ions gray). The results provide new NMR spectroscopic strategies with which to differentiate and study the structures formed in silicon-based electrode materials.  相似文献   

20.
The effects of the Pt diffusion barrier layer on the interface diffusion and reaction, crystallization, dielectric and ferroelectric properties of the PZT/Si(111) sample have been studied using XPS, AES and XRD techniques. Hie results indicate that the Pt diffusion barrier layer between the PZT layer and the Si substrate prohibits the formation of TiCx TiSix and SiO2 species in the PZT layer. The Pt barrier layer also completely interrupts the diffusion of Si from the Si substrate into the PZT layer and impedes the diffusion of oxygen from air to the Si substrate greatly. Although the Pt layer can not prevent completely the diffusion and reaction between oxygen and silicon, it can prevent the formation of a stable SiO2 interface layer on the interface of PZT/Si. The Pt layer reacts with silicon to form PtSix species on the interface of Pt/Si, which can intensify the chemical binding strength between the Pt layer and the Si substrate. To play a good role as a diffusion barrier layer, the Pt barrier layer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号