首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular dynamics simulation has been performed on a liquid film that is sheared in between solid surfaces. As a shear is given to the liquid film, a Couette-like flow is generated in the liquid and energy conversion occurs from the macroscopic flow to the thermal energy, which is discharged back to the solid walls. In such a way, momentum and thermal energy fluxes are present simultaneously. And all these thermal and fluid phenomena take place in highly nonequilibrium state where thermal energy is not distributed equally to each degree of freedom of molecular motion in the vicinities of the solid-liquid interface. In the present paper, platinum and water are employed as solid and liquid, respectively. First, the structure and orientation of water molecules in the vicinities of the solid surfaces are analyzed and how these structure and orientation are influenced by the shear is considered. Based on this result, momentum and thermal energy transfer in the vicinities of and at the solid-liquid interfaces are investigated in detail. Results are compared with those of our previous study, in which monatomic and diatomic molecules are employed as liquid.  相似文献   

2.
The dynamics of fluids at solid-liquid interfaces is investigated. In particular, we consider a simple Lennard-Jones fluid as well as a melt of hexadecane chains. For the Lennard-Jones fluid, the numerical results are compared with analytical calculations based on the diffusion equation, which shows that the numerical results can very well by described by the solution of the diffusion equation for reflecting surfaces. The diffusion coefficient is practically independent of the position within the film, although the fluid is inhomogeneous perpendicular to the surface. In contrast, the dynamics of the centers of mass of hexadecane molecules perpendicular to repulsive surfaces is severely slowed down due to their extended and anisotropic nature and cannot be described by a single particle diffusion equation.  相似文献   

3.
We report the interfacial properties of monolayers of Ag nanoparticles 10-50 nm in diameter formed at the toluene-water interface under steady as well as oscillatory shear. Strain amplitude sweep measurements carried out on the film reveal a shear thickening peak in the loss moduli (G") at large amplitudes followed by a power law decay of the storage (G') and loss moduli with exponents in the ratio 2:1. In the frequency sweep measurements at low frequencies, the storage modulus remains nearly independent of the angular frequency, whereas G" reveals a power law dependence with a negative slope, a behavior reminiscent of soft glassy systems. Under steady shear, a finite yield stress is observed in the limit of shear rate .gamma going to zero. However, for .gamma > 1 s-1, the shear stress increases gradually. In addition, a significant deviation from the Cox-Merz rule confirms that the monolayer of Ag nanoparticles at the toluene-water interface forms a soft two-dimensional colloidal glass.  相似文献   

4.
While the interaction of colloidal particles (sizes in excess of 100 nm) with liquid interfaces may be understood in terms of continuum models, which are grounded in macroscopic properties such as surface and line tensions, the behaviour of nanoparticles at liquid interfaces may be more complex. Recent simulations [D. L. Cheung and S. A. F. Bon, Phys. Rev. Lett. 102, 066103 (2009)] of nanoparticles at an idealised liquid-liquid interface showed that the nanoparticle-interface interaction range was larger than expected due, in part, to the action of thermal capillary waves. In this paper, molecular dynamics simulations of a Lennard-Jones nanoparticle in a binary Lennard-Jones mixture are used to confirm that these previous results hold for more realistic models. Furthermore by including attractive interactions between the nanoparticle and the solvent, it is found that the detachment energy decreases as the nanoparticle-solvent attraction increases. Comparison between the simulation results and recent theoretical predictions [H. Lehle and M. Oettel, J. Phys. Condens. Matter 20, 404224 (2008)] shows that for small particles the incorporation of capillary waves into the predicted effective nanoparticle-interface interaction improves agreement between simulation and theory.  相似文献   

5.
6.
The spreading of a partially wetting aqueous drop in air on a hydrophobic surface can be facilitated by the adsorption of surfactants from the drop phase onto the air/aqueous and aqueous/hydrophobic solid interfaces of the drop. At the contact line at which these interfaces meet, conventional surfactants with a linear alkyl hydrophobic chain attached to a polar group adsorb onto the surfaces, forming monolayers which remain distinct as they merge at the contact juncture. The adsorption causes a decrease in the interfacial tensions and reduction in the contact angle but the angle remains above zero so the drop is still nonwetting. Trisiloxane surfactants with a T-shaped geometry in which the hydrophobic group is composed of a trisiloxane oligomer with a polar group attached at the center of the chain can give rise to a zero contact angle at the contact line and complete wetting (superspreading). Experimental evidence suggests the adsorption of the T-shaped molecule, in addition to significantly decreasing the tensions of the interfaces (relative to the conventional surfactants), promotes the formation of a precursor film consisting of a surfactant bilayer at the contact line which facilitates the spreading. The aim of this study is to use molecular dynamics to examine if the T-shaped structure can promote spreading by the formation of a bilayer and to contrast this case with that of the linear chain surfactant where complex assembly does not occur. The simulation models the solvent as a monatomic liquid, the substrate as a particle lattice, and the surfactants as united atom structures, with all interactions given by Lennard-Jones potentials. We start with a base case in which the solvent partially wets a substrate comprised of a lattice of particles. We demonstrate that adsorbed T-shaped surfactant monolayers can, when the interaction between the solvent and the hydrophile particles is strong enough, assemble into a bilayer, allowing the drop to extend to a thin planar film. In the case of the flexible linear chain surfactant, there is no interaction between the monolayers on the two interfaces in the case of a strong hydrophile-solvent interaction and less coordination for a weaker interaction. In either case, the monolayers remain distinct, as the surfactant only marginally improves wetting.  相似文献   

7.
The structure of smectic Q (SmQ) liquid crystal phase consisting of a dichiral molecule, called M7BBM7, was studied by submicrosecond molecular dynamics (MD) simulation. A detailed atomic model was used to study the stability of a model SmQ structure proposed by Levelut et al. (Levelut, A.-M.; Hallouin, E.; Bennemenn, D.; Heppke, G.; Lotzsch, D. J. Phys. II 1997, 7, 981) and its difference between (S,S)-, (S,R)-M7BBM7 and racemic mixture systems. Negative values of the fourth-rank orientational order parameter (), which characterize the model SmQ structure, were stably kept up to a 100 ns MD run only in the (S,S)-M7BBM7 system and lost in the other systems. The results correspond well to the marked chiral sensitivity in real systems where only the (S,S)-M7BBM7 system (among the three above-mentioned systems) shows the SmQ phase. Our simulation results imply that the asymmetric intramolecular potentials and resultant chirality-dependent molecular conformations are primarily responsible for keeping the negative values of and the model SmQ structure.  相似文献   

8.
Intense diffraction from a periodic array of microscopic bubbles is reported. The bubbles are generated by 100 ps, 1.06 μm pulses from a Nd:YAG laser which are crossed at a liquid—dielectric interface. The time dependence of the diffraction yields information on surface bubble expansion, contraction, and migration. The mechanism for the production of the bubble gratings is described.  相似文献   

9.
The initial stages of the heterogeneous photoreduction of quinone species by self-assembled porphyrin ion pairs at the water|1,2-dichloroethane (DCE) interface have been studied by ultrafast time-resolved spectroscopy and dynamic photoelectrochemical measurements. Photoexcitation of the water-soluble ion pair formed by zinc meso-tetrakis(p-sulfonatophenyl)porphyrin (ZnTPPS(4)(-)) and zinc meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP(4+)) leads to a charge-separated state of the form ZnTPPS(3)(-)-ZnTMPyP(3+) within 40 ps. This charge-separated state is involved in the heterogeneous electron injection to acceptors in the organic phase in the microsecond time scale. The heterogeneous electron transfer manifests itself as photocurrent responses under potentiostatic conditions. In the case of electron acceptors such as 1,4-benzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and tetrachloro-1,4-benzoquinone (TCBQ), the photocurrent responses exhibit a strong decay due to back electron transfer to the oxidized porphyrin ion pair. Interfacial protonation of the radical semiquinone also contributes to the photocurrent relaxation in the millisecond time scale. The photocurrent responses are modeled by a series of linear elementary steps, allowing estimations of the flux of heterogeneous electron injection to the acceptor species. The rate of electron transfer was studied as a function of the thermodynamic driving force, confirming that the activation energy is controlled by the solvent reorganization energy. This analysis also suggests that the effective redox potential of BQ at the liquid|liquid boundary is shifted by 0.6 V toward positive potentials with respect to the value in bulk DCE. The change of the redox potential of BQ is associated with the formation of hydrogen bonds at the liquid|liquid boundary. The relevance of this approach toward modeling the initial processes in natural photosynthetic reaction centers is briefly discussed.  相似文献   

10.
Proton spin-lattice relaxation studies were carried out in the SA and S*C phases of the liquid crystal CI IPNOC using both conventional and fast field cycling NMR techniques. T1 dispersion curves were obtained at two different temperatures for each mesophase covering frequencies from 102 to 3 × 108 Hz. In both mesophases the T1 data can be described assuming the presence of three different relaxation mechanisms, namely local molecular rotations, molecular self-diffusion and collective motions. The self-diffusion constant D1 was evaluated for several temperatures and the activation energy associated with the diffusion process was obtained. The expected contribution of the soft-mode for the spin-lattice relaxation could not be separated from the contribution of other collective motions. The correlation times associated with the rotations around the molecular long axis and with the fluctuations of this axis were evaluated for both the SA and the S*C phases.  相似文献   

11.
Abstract

Proton spin-lattice relaxation studies were carried out in the SA and S*C phases of the liquid crystal CI IPNOC using both conventional and fast field cycling NMR techniques. T 1 dispersion curves were obtained at two different temperatures for each mesophase covering frequencies from 102 to 3 × 108 Hz. In both mesophases the T 1 data can be described assuming the presence of three different relaxation mechanisms, namely local molecular rotations, molecular self-diffusion and collective motions. The self-diffusion constant D 1 was evaluated for several temperatures and the activation energy associated with the diffusion process was obtained. The expected contribution of the soft-mode for the spin-lattice relaxation could not be separated from the contribution of other collective motions. The correlation times associated with the rotations around the molecular long axis and with the fluctuations of this axis were evaluated for both the SA and the S*C phases.  相似文献   

12.
袁伟 《化学学报》1989,47(6):519-523
本文对气固表面分子相互作用过程进行了新的考察, 能量传递效率随温度上升而降低是分子能量分布转变的自然结果, 催化作用的起因是深的解吸位阱的存在, 振动能量调节系数的数值可以大于1。新处理法在定性和定量方面都是成功的。  相似文献   

13.
We calculated the potential of mean force (PMF) for the interaction between a model zwitterionic bilayer and a model charged bilayer. To understand the role of water, we separated the PMF into two components: one due to direct interaction and the other due to water-mediated interaction. In our calculations, we observed that water-mediated interaction is attractive at larger distances and repulsive at shorter. The calculation of the entropic and enthalpic contributions to the solvent-mediated components of the PMF showed that attraction is entropically dominant, while repulsion is dominated by the enthalpy.  相似文献   

14.
An apparatus for detailed study of quantum state-resolved inelastic energy transfer dynamics at the gas-liquid interface is described. The approach relies on supersonic jet-cooled molecular beams impinging on a continuously renewable liquid surface in a vacuum and exploits sub-Doppler high-resolution laser absorption methods to probe rotational, vibrational, and translational distributions in the scattered flux. First results are presented for skimmed beams of jet-cooled CO(2) (T(beam) approximately 15 K) colliding at normal incidence with a liquid perfluoropolyether (PFPE) surface at E(inc) = 10.6(8) kcal/mol. The experiment uses a tunable Pb-salt diode laser for direct absorption on the CO(2) nu(3) asymmetric stretch. Measured rotational distributions in both 00(0)0 and 01(1)0 vibrational manifolds indicate CO(2) inelastically scatters from the liquid surface into a clearly non-Boltzmann distribution, revealing nonequilibrium dynamics with average rotational energies in excess of the liquid (T(s) = 300 K). Furthermore, high-resolution analysis of the absorption profiles reveals that Doppler widths correspond to temperatures significantly warmer than T(s) and increase systematically with the J rotational state. These rotational and translational distributions are consistent with two distinct gas-liquid collision pathways: (i) a T approximately 300 K component due to trapping-desorption (TD) and (ii) a much hotter distribution (T approximately 750 K) due to "prompt" impulsive scattering (IS) from the gas-liquid interface. By way of contrast, vibrational populations in the CO(2) bending mode are inefficiently excited by scattering from the liquid, presumably reflecting much slower T-V collisional energy transfer rates.  相似文献   

15.
Though the local dielectric constant at interfaces is an important phenomenological parameter in the analysis of surface spectroscopy, its microscopic definition has been uncertain. Here, we present a full molecular theory on the local field at interfaces with the help of molecular dynamics simulation, and thereby provide microscopic basis for the local dielectric constant so as to be consistent to the phenomenological three-layer model of interface systems. To demonstrate its performance, we applied the theory to the water/vapor interface, and obtained the local field properties near the interface where the simple dielectric model breaks down. Some computational issues pertinent to Ewald calculations of the dielectric properties are also discussed.  相似文献   

16.
Large-scale molecular dynamics simulations are used to simulate a layer of nanoparticles floating on the surface of a liquid. Both a low viscosity liquid, represented by Lennard-Jones monomers, and a high viscosity liquid, represented by linear homopolymers, are studied. The organization and diffusion of the nanoparticles are analyzed as the nanoparticle density and the contact angle between the nanoparticles and liquid are varied. When the interaction between the nanoparticles and liquid is reduced the contact angle increases and the nanoparticles ride higher on the liquid surface, which enables them to diffuse faster. In this case the short-range order is also reduced as seen in the pair correlation function. For the polymeric liquids, the out-of-layer fluctuation is suppressed and the short-range order is slightly enhanced. However, the diffusion becomes much slower and the mean square displacement even shows sub-linear time dependence at large times. The relation between diffusion coefficient and viscosity is found to deviate from that in bulk diffusion. Results are compared to simulations of the identical nanoparticles in 2-dimensions.  相似文献   

17.
The influence of an intense external field on the dynamics of the nematic liquid crystal phase is investigated using a molecular dynamics simulation for the Gay-Berne nematogen under isobaric-isothermal conditions. The molecular dynamics as a function of the second-rank orientational order parameter P<2> for a system consisting of a nematic liquid crystal in the presence of an intense magnetic field is compared with that of a similar system without the field. The translational motion of molecules is determined as a function of the translational diffusion coefficient tensor and the anisotropy and compared with the values predicted theoretically. The rotational dynamics of molecules is analyzed using the first- and the second-rank orientational time correlation functions. The translational diffusion coefficient parallel with respect to the director is constrained by the intense field, although the perpendicular one is decreased as the P<2> is increased, just as it is in the system without the field. However, no essential effect of the strong magnetic field is observed in the rotational molecular dynamics. Further, the rotational diffusion coefficient parallel with respect to the director obtained from the first-rank orientational time correlation function in the simulation is qualitatively in agreement with that in the real nematic liquid crystalline molecules. The P<2> dependence of the rotational diffusion coefficient for the system with the intense magnetic field shows a tendency similar to that for the system without the field.  相似文献   

18.
Molecular dynamics simulations are reported for the four component nematic liquid crystal mixture E7, which is used commercially. We are able to show the growth of a nematic phase directly from an isotropic liquid over a 100 ns period for an all-atom model, and study orientational and dipole order within the nematic phase. The simulations show that the cyanoterphenyl component of the mixture, 5CT, is more ordered than the three cyanobiphenyl components. The simulations show also that both parallel and anti-parallel dipole correlation take place in E7 but that the strong anti-parallel dipole correlation is localised to particular arrangements of molecules. It is possible to identify two key preferred configurations for molecular pairs in the fluid, which explain the form of the dipole correlation function, g(1)(r).  相似文献   

19.
The present work aims to contribute to the understanding at a molecular level of the origin of the hydrophobic nature of surfaces exhibiting roughness at the nanometer scale. Graphite-based smooth and model surfaces whose roughness dimension stretches from a few angstroms to a few nanometers were used in order to generate Cassie and Wenzel wetting states of water. The corresponding solid-liquid surface free energies were computed by means of molecular dynamics simulations. The solid-liquid surface free energy of water-smooth graphite was found to be -12.7 ± 3.3 mJ/m(2), which is in reasonable agreement with a value estimated from experiments and fully consistent with the features of the employed model. All the rugged surfaces yielded higher surface free energy. In both Cassie and Wenzel states, the maximum variation of the surface free energy with respect to the smooth surface was observed to represent up to 50% of the water model surface tension. The solid-liquid surface free energy of Cassie states could be well predicted from the Cassie-Baxter equation where the surface free energies replace contact angles. The origin of the hydrophobic nature of surfaces yielding Cassie states was therefore found to be the reduction of the number of interactions between water and the solid surface where atomic defects were implemented. Wenzel's theory was found to fail to predict even qualitatively the variation of the solid-liquid surface free energy with respect to the roughness pattern. While graphite was found to be slightly hydrophilic, Wenzel states were found to be dominated by an unfavorable effect that overcame the favorable enthalpic effect induced by the implementation of roughness. From the quantitative point of view, the solid-liquid surface free energy of Wenzel states was found to vary linearly with the roughness contour length.  相似文献   

20.
The rates of electron transfer (ET) reactions at the water/ionic liquid (IL) interface have been measured for the first time using scanning electrochemical microscopy. The standard bimolecular rate constant of the interfacial ET between ferrocene dissolved in 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and aqueous ferricyanide (0.4 M-1 cm s-1) was found to be approximately 30 times higher than the corresponding rate constant measured at the water/1,2-dichloroethane interface. The driving force dependence of the ET rate was investigated over a wide range of the interfacial potential drop values (>200 mV). The observed Butler-Volmer-type dependence is discussed in terms of the interfacial model. The ET was also probed at the interface between aqueous solution and the mixture of the IL and 1,2-dichloroethane. The mole fractions in this mixture were varied systematically to investigate the transition from the water/organic to the water/IL interface. The observed decrease in the rate constant with increasing mole fraction of 1,2-dichloroethane is in contrast with the previously reported direct correlation between the electrochemical rate constant and the diffusion coefficient of redox species in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号