首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the transition from a lamellar phase to a gyroid phase in an aqueous solution of a diblock copolymer has been studied by time-resolved synchrotron small-angle X-ray scattering. The transition occurs via a metastable perforated lamellar structure. The perforations initially have liquidlike ordering before developing hexagonal packing. The transient phase of irregularly perforated layers is revealed by the development of diffuse scattering peaks, just below the Bragg peaks of the lamellar structure. The diffuse scattering is modeled by Monte Carlo simulations of perforated layers. Following the formation of perforations, Bragg peaks characteristic of a hexagonal structure signal an ordering into a hexagonal lattice (with the concomitant loss of diffuse scattering). Computer simulations based on a dynamic density functional model reproduce these features. The hexagonal perforated lamellar phase is rapidly replaced by the gyroid phase. The domain spacing of the gyroid phase is larger than that of the perforated lamellar structure. The perforated lamellar and gyroid phases coexist for a defined period. The reverse transition from gyroid to lamellae occurs directly, with no transient or metastable intermediates.  相似文献   

2.
A series of rod-coil molecules (n-x, where n represents the number of repeating units in a PPO coil and x the number of phenyl groups in a rod segment) with variation in the molecular length, but an identical rod to coil volume ratio was synthesized, and their self-assembling behavior was investigated by using DSC and X-ray scatterings. The molecule with a short rod-coil molecule (16-4) shows a 3-D tetragonal structure based on a body-centered symmetry of the discrete bundles in addition to a lamellar structure. This 3-D lattice, on heating, collapses to generate a disordered micellar structure. Remarkably, the molecules based on longer molecular length (21-5 and 24-6) were observed to self-organize into, on heating, lamellar, tetagonally perforated lamellar, 2-D hexagonal columnar and finally disordered micellar structures. Further increase in the molecular length as in the case of 29-7 and 32-8 induces a 3-D hexagonally perforated lamellar structure as an intermediate structure between the lamellar and tetragonally perforated lamellar structures. Consequently, these systems demonstrate the ability to regulate the domain nanostructure, from 2-dimensionally continuous layers, long strips to discrete bundles via periodic perforated layers by small changes in the molecular length, at an identical rod-to-coil volume fraction.  相似文献   

3.
The cylinder‐to‐gyroid transition in a concentrated solution of polystyrene‐block‐polyisoprene in dibutyl phthalate has been studied using rheology and small angle X‐ray scattering. Following an appropriate temperature quench, the oriented cylinder phase transforms to the gyroid structure epitaxially. Remarkably, an intermediate state appears for a deep quench, whereas for a shallow quench the transition proceeds directly; the intermediate state exhibits scattering signatures consistent with a hexagonally perforated layer structure.  相似文献   

4.
The specific interfacial area (S/V) and interfacial thickness in each microstructure of styrene-isoprene diblock copolymer were estimated by analyzing the deviations from Porod’s law. The thermally induced phase transitions proceeded from lamellae (L) to hexagonally ordered cylinder (HEX), via hexagonally perforated layer (HPL) and gyroid (G). The S/V ratio increased stepwise at the order-order transition (OOT) from L to HEX, via HPL and G. The S/V data can be utilized for OOT determination.  相似文献   

5.
Tetramerization of coil-rod-coil ABC triblock copolymers to a tetrabranched molecule induces an unusual 3-D tetragonally perforated layered liquid crystalline phase as an intermediate structure between 1-D lamellar and 2-D hexagonal columnar phases.  相似文献   

6.
Mesoscopic simulations of linear and 3-arm star poly(styrene)-poly(isoprene) block copolymers was performed using a representation of the polymeric molecular structures by means of Gaussian models. The systems were represented by a group of spherical beads connected by harmonic springs; each bead corresponds to a segment of the block chain. The quantitative estimation for the bead-bead interaction of each system was calculated using a Flory-Huggins modified thermodynamical model. The Gaussian models together with dissipative particle dynamics (DPD) were employed to explore the self-organization process of ordered structures in these polymeric systems. These mesoscopic simulations for linear and 3-arm star block copolymers predict microphase separation, order-disorder transition, and self-assembly of the ordered structures with specific morphologies such as body-centered-cubic (BCC), hexagonal packed cylinders (HPC), hexagonal perforated layers (HPL), alternating lamellar (LAM), and ordered bicontinuous double diamond (OBDD) phases. The agreement between our simulations and experimental results validate the Gaussian chain models and mesoscopic parameters used for these polymers and allow describing complex macromolecular structures of soft condensed matter with large molecular weight at the statistical segment level.  相似文献   

7.
The kinetics for the formation of the single gyroid (SG) nanostructure in ABC triblock terpolymers is investigated using the self‐consistent field theory combined with the string method. Both simple phases (lamellae, cylinders, and spheres) and networked double diamonds (DD) can transform into SG through order–order phase transition (OOT). In particular, a packing frustration‐induced variation in the epitaxial relationship between DD and SG is demonstrated. By regulating the block interaction, an expected epitaxial phase transition between these two networks without any rotation of the crystallographic directions can be achieved. Interestingly, the hexagonally perforated lamellae (HPL) are encountered in all identified transition pathways to SG. Nucleation kinetics investigation shows that the HPL tends to nucleate from SG easily, which confirms the kinetic origins of the instability of SG in experiments. Therefore, several strategies of preventing the SG being bypassed, such as controlling annealing time and rates during the morphology evolution, are proposed to promote the stabilizing of the SG in kinetic pathways. The findings reported here provide a novel route for fabrication of SG structured materials by manipulating both the epitaxial relationship and the nucleation kinetics in OOT pathways.  相似文献   

8.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

9.
Producing macrocyclic mesogens that are responsive to guest encapsulation presents a significant challenge. Cyclo[6]aramides, a type of macrocycle with a hydrogen‐bond‐constrained backbone, exhibit thermotropic lamellar, discotic nematic, hexagonal, and rectangular columnar mesophases over a considerably wide temperature range, including at room temperature. Additionally, cyclo[6]aramides show unusual mesophase transitions from lamellar to hexagonal columnar phase mediated by macrocyclic host–guest (H–G) interactions between the macrocycles and alkylammonium salts. The phase transition, triggered by an organic guest engaging in H–G interactions with a macrocyclic cavity, provides a novel strategy for manipulating the properties of liquid‐crystalline materials. The crystal structure of a homologous cyclo[6]aramide reveals a disk‐shaped, near‐planar molecular backbone that facilitates intermolecular π–π stacking and leads to columnar assembly.  相似文献   

10.
The phase behaviors of the binary mixture of an anionic surfactant aerosol OT (AOT) and water are investigated on a mesoscopic level using dissipative particle dynamics (DPD) computer simulations. With a simple surfactant model, various aggregation structures of AOT in water including the lamellar, viscous isotropic, and reverse hexagonal phases are obtained, which agree well with the experimental phase diagram. Special attention is given on the unusual lamellar regions. Water diffusivity shows much useful information to understand how the phase behaviors varied with concentration and temperature. It is proposed that the anomalous lamellar phenomena at intermediate AOT concentration (about 40%) are due to the formation of a defective structure, pseudoreversed hexagonal phase, which evidently decreases the water diffusivity. After increasing temperature above 328 K, the pseudoreversed hexagonal structure will be partly transformed to a normal lamellar phase structure and the system lamellar ordering is therefore enhanced.  相似文献   

11.
The initial stages of SBA-15 synthesis have been studied by using in situ time-resolved small-angle X-ray scattering with a synchrotron radiation source. The quantitative analysis of X-ray scattering and diffraction intensities allows the structures of intermediates to be identified at the different stages of SBA-15 synthesis. Following tetraethylorthosilicate (TEOS) addition, an intense small-angle scattering and an associated secondary maximum are observed, which are attributed to non-interacting surfactant template micelles encrusted with silicate species. After 25-30 min of the reaction, the broad scattering disappears and narrow Bragg diffraction peaks typical of hexagonally ordered structure are observed. The cylindrical micelles identified from X-ray scattering data appear to be the direct precursors of 2D hexagonal SBA-15 structure. Just after the formation of the SBA-15 hexagonal phase, the cylindrical micelles are only weakly linked in the hexagonal structure. As the synthesis proceeds, the solvent in the void volume between the cylindrical micelles is gradually replaced by more dense silicate species. The unit cell parameter of SBA-15 is progressively decreasing during the SBA-15 synthesis, which can be related to the condensation and densification of silicate fragments in the spaces between the cylinders. The volume fraction of the 2D hexagonally ordered phase is sharply growing during the first 2 h of the reaction. The inner core radius of SBA-15 material remains almost constant during the whole synthesis and is principally affected by the size of the poly(propylene oxide) inner core in the original cylindrical micelles.  相似文献   

12.
The synthesis of mesostructured silica from a tetrahydrofuran (THF)-based sol gel was carried out in the channels of an anodic alumina membrane (AAM) using the evaporation-induced self-assembly (EISA) method. Two different nonionic surfactants were used as structure-directing agents, the triblock copolymer Pluronic P123 and the oligomer surfactant Brij56. The effect of the relative humidity and surfactant concentration on the type of mesophase and orientation of the in-channel mesostructures was studied using transmission electron microscopy (TEM) and grazing incidence small angel X-ray scattering (GISAXS). The in-channel structures obtained in this study were primarily of the 2D hexagonal phase with a circular orientation in which the hexagonally packed cylinders form a spiral-like shape from the channel wall inward. In addition, a columnar orientation of the hexagonal phase, in which the axes of the hexagonally packed cylinders are oriented parallel to the channel axes, was also observed. Finally, the use of the THF-based synthesis allowed the in situ incorporation of the highly hydrophobic yellow-emitting conjugated polymer poly[9,9-dioctylfluorene-co-benzothiadiazole] into the in-channel mesostructure upon its formation. The conjugated polymer was well distributed within the mesostructure and maintained its optical properties.  相似文献   

13.
A temperature-induced commensurate solid-solid phase transition in self-assembled monolayers (SAMs) of alkylthiolates lying on Pt(111) is predicted from molecular dynamics simulations based on ab initio potential energy surfaces. As the system cools down from room temperature to low enough temperature, SAMs of alkylthiolates with more than ~12 carbon atoms undergo an abrupt change of orientation from a nearly upright to a tilted configuration. As the initial hexagonal arrangement of the sulfur headgroups is kept fixed during the simulations, the phase transition is entirely governed by chain-chain interactions. Similar commensurate phase transitions are predicted for hexagonally arranged SAMs with lattice spacings of the order of 4.7-4.9 ?, which, among others, excludes the well-known cases of densely packed SAMs of alkylthiolates on Au(111) and Ag(111). These findings could be relevant for the design of novel electronic or optical devices controllable by temperature.  相似文献   

14.
The thermotropic phase behaviour and phase structure of crystalline and non-crystalline n-tetradecyl-beta-D-maltoside (C14G2) and n-hexadecyl-beta-D-maltoside (C16G2) have been investigated by means of differential scanning calorimetry and X-ray techniques. Upon lyophilisation, both compounds form a solid, lamellar phase comprising disordered head groups and hexagonally packed alkyl chains that are suggested to be tilted and interdigitated. This ordered lamellar phase melts into a metastable lamellar liquid crystal, which re-crystallises to a high-temperature crystalline polymorph comprising interdigitated, non-tilted alkyl chains. Remarkably, the high-temperature polymorph of C14G2 has the same melting point as that of C16G2, namely 105 degrees C for both surfactants. A low-temperature polymorph of anhydrous C14G2 crystallises from water at room temperature, whereas the hemihydrate of C14G2 crystallises at 6 degrees C from water, or from chloroform containing trace water. X-ray data suggest both these crystalline modifications to comprise interdigitated and tilted alkyl chains.  相似文献   

15.
The pressure-induced phase transition in a microemulsion, consisting of pentaethylene glycol mono-n-dodecyl ether, water, and n-octane, was investigated by means of small-angle neutron scattering. A pressure-induced phase transition from a lamellar structure to a hexagonal structure was observed. The temperature-pressure phase boundary shows a positive slope with dTdP approximately 0.09 KMPa. The structure unit of the high-pressure hexagonal phase was an oil-in-water cylinder with the membrane thickness of 15.5 A, identical to the low-temperature hexagonal phase. Pressurizing was found to have the same effect by decreasing temperature. This behavior was satisfactorily explained with the pressure dependence of the spontaneous curvature of surfactant membranes. That is, the volume change of surfactant tails plays a dominant role in the structure change of the microemulsion with applying pressure.  相似文献   

16.
Polymerization was made at 60°C in a lyotropic liquid crystal of sodium undecenoate and water. The liquid crystalline structure prior to polymerization was identified by optical microscopy and low-angle x-ray diffraction as an array of hexagonal closely packed cylinders with the hydrophobic part of the soap in the center of the cylinders. During polymerization the structure became isotropic at 60°C. Cooling to 20°C transformed the structure to a lamellar liquid crystal–a reversible transition. The structure of the lamellar phase was interpreted as a polyethylene backbone from which deformed decanoate chains reached toward the aqueous layer. Molecular models showed the model to accept head-tail, head-head, and tail-tail configurations in cis and trans conformations with the exception of the cis tail-tail configuration.  相似文献   

17.
Mesoporous silica materials with pore structures such as 2D hexagonal close packed, bicontinuous cubic, lamellar, sponge, wormhole-like, and rectangular have been made by using surfactant templating sol-gel processes. However, there are still some "intermediate" phases, in particular mesh phases, that are formed by surfactants but which have not been made into analogous silica pore structures. Here, we describe the one-step synthesis of mesoporous silica with a mesh phase pore structure. The cationic fluorinated surfactant 1,1,2,2-tetrahydroperfluorodecylpyridinium chloride (HFDePC) is used as the template. Like many fluorinated surfactants, HFDePC forms intermediate phases in water (including a mesh phase) over a wider range of compositions than do hydrocarbon surfactants. The materials produced by this technique are novel elongated particles in which the layers of the mesh phase are oriented orthogonal to the main axis of the particles.  相似文献   

18.
We present temperature versus concentration phase diagrams for "shape amphiphiles" comprised of tethered moderate and low aspect ratio rods. Simulations of moderate aspect ratio rods (first reported by Horsch et al. [Phys. Rev. Lett. 95, 056105 (2005)]) predict their self-assembly into spherical micelles with bcc order, long micelles with nematic order, a racemic mixture of hexagonally ordered chiral cylinders, two perforated phases: one with tetragonal order and one with hexagonal order, and a smectic C lamellar phase. In contrast, we predict here that small aspect ratio tethered rods self-assemble into bcc ordered spherical micelles, hexagonally ordered cylinders, and a smectic C lamellar phase. We compare and contrast the phases obtained for the two aspect ratios and examine in further detail several unusual phases. Our simulations also reveal that for moderate aspect ratio rods there is a tendency toward phases with decreasing interfacial curvature with decreasing coil size, including a double gyroid phase. In addition, we investigate the role of tether length on the assembled structures. Our results are applicable to short rod-coil block copolymers and rodlike nanoparticles with polymer tethers, and to colloidal building blocks comprised of a flexible string of colloids tethered to a rigid string of colloids, with the interactions scaled appropriately.  相似文献   

19.
The phase sequences of eight fully hydrated synthetic, stereochemically pure glycoglycerolipids with saturated alkyl chains 12-18 carbon atoms long and a glucose, galactose or mannose head group are followed in real time during heating and cooling scans using synchrotron X-ray diffraction. One of them, 1,2-di-O-hexadecyl-3-O-β-D-glucosyl-sn-glycerol, has been characterized by X-ray diffraction for the first time. A summary of the lamellar-non-lamellar transition sequences and reversibility for all eight glycoglycerolipids studied is provided. It includes also observations of intermediate phases, previously not detected. Lattice parameters of the various phases have been determined as functions of chain length in monoglucosides. While the repeat periods of the lamellar phases increase linearly with chain length, an anomalously high lattice spacing of the inverted hexagonal phase is observed at a chain length of 14 carbon atoms. This maximum coincides with the disappearance of the cubic phases from the phase sequence upon chain elongation from 12 to 14 carbon atoms. It thus appears that the expanded HII phase in 14-Glc retains structural characteristics of the anticipated cubic phases. Upon heating to high temperatures, its high lattice spacing gradually approaches that of the 'normal' hexagonal phase. A direct transition from lamellar subgel to inverted hexagonal phase has been observed to proceed without intermediate structures, but with an extended phase coexistence region, in 1,2-di-O-tetradecyl-3-O-β-D-galactosyl-sn-glycerol and 1,2-di-O-octadecyl-3-O-β-D-galactosyl-sn-glycerol. This transition is not reversible on cooling when lamellar phases skipped in the heating scan intervene. By contrast, the direct lamellar gel-inverted hexagonal phase transitions are fully reversible with minor or absent temperature hysteresis.  相似文献   

20.
The direct lyotropic polymorphism of dodecyltrimethylammonium chloride (DTAC) was investigated by synchrotron X-ray diffraction at different water concentrations under compression up to 2 kbar, i.e., in the pressure intermediate range where interesting biophysical transformations occur and the functional characteristics of cell membranes are altered. The results show that pressure induces the transition from the hexagonal phase to the micellar Pm3n cubic phase in hydrated samples (c between 0.5 and 0.6, c being the weight concentration of lipid in the mixture) and the transition from the bicontinuous Ia3d cubic phase to the hexagonal phase in drier samples (c = 0.8). By increasing the pressure on very dry samples, a lamellar L(alpha) phase was observed to form transitorily at the Ia3d cubic-hexagonal phase transition. Phase compressibility and then the lipid and water partial molecular compressibilities were derived as a function of pressure and concentration. As a result, we assessed the very low compressibility of the hydration water within the lipid phases, and we demonstrated that the compressibility of DTAC is very dependent on pressure. Moreover, the molecular parameters of DTAC calculated in the different phases during compression confirmed that pressure induces small but continuous conformational changes, definitely different from the large changes observed in lipid molecules forming type II structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号