首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An ion-exchangeable ruthenate with a layered structure, K0.2RuO2.1, was prepared by solid-state reactions. The interlayer cation was exchanged with H+, C2H5NH3+, and ((C4H9)4N+) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K0.2RuO2.1 exhibited metallic conduction between 300 and 13 K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.  相似文献   

2.
Four quaternary sulfides SrCu2MS4 and EuCu2MS4 (M=Ge and Sn) were prepared from a thoroughly ground mixture of EuS or SrS, Cu, or Sn, and S in stoichiometric proportions. Electrical conductivity measurements on pressed pellets showed that all the phases are semiconductors. The optical band gaps were assessed at 2.8 eV for SrCu2GeS4, 2.1 eV for SrCu2SnS4, 2.2 eV for EuCu2SnS4, and 1.6 eV for EuCu2GeS4. Both Sr-based compounds present a temperature-independent paramagnetism, of about +135×10−6 and +92×10−6 emu/mol, for SrCu2SnS4 and SrCu2GeS4, respectively. In the case of the europium compounds, they follow a Curie-Weiss dependence above 1.8 K (EuCu2GeS4) and above 4 K (for EuCu2SnS4), with values of the magnetic effective moment μeff and the Curie-Weiss temperature Θ, equal to 6.27 μB and −2.8 K for EuCu2GeS4, and 6.81 μB and +0.7 K, for EuCu2SnS4. The experimental magnetic moments confirm that the europium ion is in divalent state, similar to Sr in the related compounds.  相似文献   

3.
Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10−3(Ω cm) and 3.53 × 1018 cm−3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10−3(Ω/sq)- 1 is suggested for an optoelectronic device.  相似文献   

4.
The polycrystalline Sr2FeMoO6-xSx (0.0 ≤ x ≤ 0.4) series were synthesized. The structure of Sr2FeMoO6-xSx is assigned to tetragonal system with space group I4/mmm. The cell volume decreases with x from 0.0 to 0.3, then, increases with x from 0.3 to 0.4. S doping leads the oxygen/sulfur at 4e and 8h positions to movement away from Fe and to displacement toward Mo, respectively. The MS at room temperature increases with degree of order of Fe and Mo ions. The electrical resistivity for studied samples exhibits a semiconductor-like behavior. The resistivity decreases with S doping. The electrical transport behavior is mainly dominated by electron-electron interactions except x = 0.4 in 0.0 magnetic field.  相似文献   

5.
The magnetic and transport properties of ternary rare-earth chromium germanides RCr0.3Ge2 (R=Y and Tb-Er) have been determined. X-ray and neutron diffraction studies indicate that these compounds have the CeNiSi2-type structure (space group Cmcm) [1]. Magnetic measurements reveal the antiferromagnetic ordering below TN equal to 18.5 K (R=Tb), 11.8 K (Dy), 5.8 K (Ho) and 3.4 K (Er). From the neutron diffraction data the magnetic structures have been determined. For TbCr0.3Ge2 and DyCr0.3Ge2 at low temperatures the magnetic ordering can be described by two vectors k1=(,0,0) and k2=(,0,), and k1=(,0,0) and k2=(,0,), respectively. In HoCr0.3Ge2 and ErCr0.3Ge2 the ordering can be described by one propagation vector equal to (,,0) and (0,0,0.4187(2)), respectively. In DyCr0.3Ge2 some change in the magnetic ordering is observed at Tt=5.1 K. In temperature range from Tt to TN the magnetic ordering is given by one propagation vector k=(,0,0). YCr0.3Ge2 is a Pauli paramagnet down to 1.72 K which suggests that in the entire RCr0.3Ge2 series the Cr atoms do not carry magnetic moments. All compounds studied exhibit metallic character of the electrical conductivity. The temperature dependencies of the lattice parameters reveal strong magnetostriction effect at the respective Nèel temperatures.  相似文献   

6.
The complexes of cerium with nitrogen, oxygen and sulfur donor ligands were prepared by conventional method. These newly synthesized complexes were characterized by FTIR, UV–Vis, DART Mass, TGA, PXRD, SEM and TEM techniques. The magnetic studies were carried out by the vibrating sample magnetometer. The optical constants were measured by absorption and reflection spectra as a function of wavelength. The concentration dependence of refractive index and absorption was observed by the experimental method, which reveals that these parameters are affected by change in concentration. The optical band gap obtained from Tauc-plot indicates its probability to be a good semiconductor. The luminescence behavior of these cerium complexes was observed by the absorption and emission spectra and the emission life time was calculated by their life time spectra.  相似文献   

7.
Ternary chalcogenides with direct band gaps are remarkable for being used in many optoelectronic applications. We investigated for structural, electronic, optical, and transport characteristics of new Ba2CdCh3 (Ch = S, Se, Te) semiconductors using the full-potential linearized augmented plane wave (FP-LAPW) approach. The band structures of these compounds confirm a direct type of band gap. The phonon dispersion plots along with the predicted negative formation energies suggest these compounds to be thermodynamically stable. Additionally, important optical characteristics were computed and thoroughly explained. The different ELF spectra were calculated in which strong peak correlate precisely with plasma resonance. Moreover, we also explored the thermodynamic characteristics of the ternary systems by employing the quasi-harmonic Debye model. These compounds were also suitable for thermoelectric applications based on the detailed discussion of the computed significant thermoelectric properties. In general, the advancement of various and promising semiconducting devices and their applications will be supported by the present study.  相似文献   

8.
The main aim of the paper to the synthesis of Mn (x)-doped NiCr2O4 nanoparticles by varying Mn content (x = 0.00%, 0.01%, 0.02%, and 0.03%) by microwave method for correlating the effect of NiCr2O4 on structural, optical, and magnetic properties of the materials. Understanding the optical, magnetic, and structural properties of huge reservoir factors has essential applications in various aspects of materials science. Our study is to relate the reduction of grain size of Mn content in NiCr2O4 host material. The XRD results revealed that there was an apparent decrease in the characteristic peaks of Mn in the MnNiCr2O4 nanostructure. Particularly, the peak position of (2 2 0) and (3 1 1) planes was decreased. This decrease in peak position is attributed to the creation of defects or disorders due to the Mn ions in the chromite lattice structure. This inter-site Mn cation migration is responsible for the breaking of long-range cation order and the introduction of defects at both the T-site and O-sublattices site simultaneously.  相似文献   

9.
In the present investigation, the effect of annealing temperature on the structural, electrical transport and the magnetocaloric effect of Nd0.6Sr0.4MnO3 manganites have been studied. Rietveld refinement of XRD data reveals that all samples are single phase with a space group (Pnma). Heat treatment enhances the grain size and decreases the porosity. All samples suffer Curie transition from ferromagnetic to paramagnetic. Magnetocaloric parameters have been determined by the analysis of isothermal M (H) curves around Curie temperature (ΔH = 2 T) for samples. Heat treatment enhances magnetic entropy, which reaches a maximum at Tan = 900 °C. In addition, the rate cooling power records highest value at Tan = 700 °C.  相似文献   

10.
11.
Two types of the epoxy-POSS nanocomposites were prepared and their electrical/dielectric and thermomechanical properties were determined. The mono- and octa-epoxyfunctionalized POSS (POSS,E1 and POSS,E8) were covalently incorporated in the epoxy network matrix DGEBA-3,3′-dimethyl-4,4′-diaminocyclohexylmethane (Laromin C260) as pendant units or as polyhedral junctions, respectively. While the POSS junctions are well dispersed in the hybrid network DGEBA-Laromin-POSS,E8, the pendant POSS aggregate to form large crystalline POSS domains.The properties of the nanocomposites correlate with the morphology. The nanocomposites with inhomogeneously dispersed large aggregates of pendant POSS,E1 show poor properties, including low Tg and thermal stability, and the high dielectric loss factor at higher temperatures. On the contrary, the well homogeneous nanocomposites containing POSS,E8 dispersed units display improved electrical properties in the range of 1–10 wt.% POSS. The hybrid exhibits the high resistivity (1 × 1015 Ω m) and polarization index pi1 characterizing electrical relaxation, as well as the low dielectric loss factor tan δ, mainly at temperatures above 50 °C. Moreover, the material shows improved thermo oxidative stability and enhanced thermomechanical behavior. Consequently, this nanocomposite was proved to be a prospective insulation material particularly for a high temperature electrotechnical application. In contrast to electrical properties being the best at a low POSS content, the thermomechanical properties, such as rubbery modulus and Tg, are gradually improving with increasing POSS content due to growing crosslinking density.  相似文献   

12.
The variation of dielectric constant and dielectric loss of two novel polybenzimidazole (PBI) were studied at constant temperature with variable frequency. The polymers have shown maximum dielectric constant at low applied frequency 50 Hz at 393 K due to the space charge polarization. The AC conductivity and activation energy of polymers were arrived from dielectric constant and dielectric loss values. PBIs were synthesized by the oxidative polycondensation of benzimidazole monomers, 2-(1H-benzo [d] imidazole-2-yl)-4-bromophenol (BIBP), and 2-(1H-benzo [d] imidazole-2-yl)-6-methoxyphenol (BIMP) in an aqueous alkaline medium using NaOCl as oxidant. The monomers and polymers were characterized by various spectroscopic techniques. Fluorescence spectra of monomers and polymers showed their λ max emission in the region of 472–479 and 463–472 nm respectively. The electrical conductivities of iodine doped polybenzimidazoles were measured by four-point probe technique and it increases with increase in iodine vapour contact time. The electrical conductivity values were correlated with the charge density on imidazole nitrogen obtained from Huckel calculation method. Both the PBI are having reasonably good thermal stability and are shown by high carbines residues of around 40% at 500°C in thermogravimetric analysis.  相似文献   

13.
4-Benzylaminobiphenylglyoxime ligand and its Cu(II) and Co(II) complexes were prepared. -bridge containing 4-benzylaminobiphenylglyoxime complexes were obtained by replacing of the bridging protons of the dioxime complexes with BF2 group. These compounds have been characterized by elemental analysis, spectroscopic (ICP-OES, infra-red) and magnetic susceptibility measurements. Thermal decomposition of the complexes is studied in nitrogen atmosphere. The final decomposition products are found to be the corresponding metal oxides. The optical constants such as optical conductivity, dielectric constant, refractive index were determined for the complexes. The analysis of the optical absorption data revealed that the band gap Eg was direct transitions. The optical dispersion parameters were determined according to Wemple and Didomenico method.  相似文献   

14.
Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.  相似文献   

15.
A nest-shaped cluster [(C4H9)4N]2[WOSe3Cu3Br1.67Cl1.33] (1) and a cage-shaped cluster [(C4H9)4N]3[WSe4Cu3Br2Cl2] (2) were synthesized and their structures were determined by single-crystal X-ray diffraction. It was found that cluster 1 showed better optical limiting properties under an 8 ns pulsed laser at 532 nm but poorer optical limiting properties under a 35 ps pulsed laser compared with its analogue [(C4H9)4N]2[MoOS3Cu3BrCl2]. The influence of the peripheral ligands of the cluster to the optical limiting properties was also discussed.  相似文献   

16.
The total and partial density of states, electronic charge density and optical properties of the monoclinic structure K10Ge18WO4 compound have been investigated using a full relativistic version of the full-potential augmented plane-wave method based on the density functional theory, within local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA). Density of states discloses the semiconductor nature of the calculated compound. There exists a strong hybridization between K-p and K-s, W-d and O-p, W-f and K-p. The analysis of the chemical bonding shows that the bonding possesses strong covalent nature. The dielectric optical properties were also calculated and discussed in detail. The electrical transport coefficients of the under observation compound have been investigated using the density functional theory calculation within EVGGA.  相似文献   

17.
Five new coordination compounds, {[Mn(L)(CH3OH)2] · CH3OH · H2O} n (1), {[Cd(L)(DMF)2(H2O)] · H2O} n (2), {[Co(L)(CH3OH)4] · CH3OH}2 (3), {[Cd(L)(phen)(CH3OH)] · CH3OH} n (4), and {[Mn(L)(phen)(H2O)] · CH3OH} n (5) (L = 5-ferrocene-1,3-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were obtained from different metal salts and L with or without 1,10-phen under mild conditions. Complex 1 is a 1-D ladder-like chain composed of 8-membered rings A and 16-membered rings B, which arrange alternately. Complex 2 is an infinite linear chain, further bridged to form a parallel double chain through different hydrogen-bond interactions. Complex 3 is a discrete dinuclear structure, while 4 is a neutral 1-D infinite zigzag coordination chain. Complex 5 is a 1-D linear chain with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. Variable temperature magnetic susceptibilities of 1 were measured and weak antiferromagnetic exchange interactions between the neighboring Mn(II) ions were found with J = ?0.95 cm?1.  相似文献   

18.
The reaction of Cu(Ac)2·4H2O with 2-[(3,5-dichloro-2-hydroxy-benzylidene)-amino]-2hydroxymethyl-propane-1,3-diol (H4L) and 4,4′-bipyridyl-N,N′-dioxide (4,4′-bipy-NO) in DMF under solvothermal conditions leads to the formation of a di-radical dinuclear copper complex [Cu2(4,4′-bipy-NO)(dcdmap)4] (1) (dcdmap is the anion of 2,4-dichloro-6dimethylaminomethyl-phenol, synthesized by an in situ reaction). Compound 1 was characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Complex 1 displays dominant anti-ferromagnetic interaction between oxyradicals and copper ion and oxyradical.  相似文献   

19.
The present study explores the structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2 using a pseudopotential plane-wave method in the framework of density functional theory within the generalized gradient approximation. The calculated lattice constants and internal coordinates are in very good agreement with the experimental findings. Independent single-crystal elastic constants as well as numerical estimations of the bulk modulus, the shear modulus, Young's modulus, Poisson's ratio, Pugh's indicator of brittle/ductile behaviour and the Debye temperature for the corresponding polycrystalline phase were obtained. The elastic anisotropy of BaIn2P2 was investigated using three different indexes. The calculated electronic band structure and the total and site-projected l-decomposed densities of states reveal that this compound is a direct narrow-band-gap semiconductor. Under the influence of hydrostatic pressure, the direct D–D band gap transforms into an indirect B-D band gap at 4.08 GPa, then into a B–Γ band gap at 10.56 GPa. Optical macroscopic constants, namely, the dielectric function, refractive index, extinction coefficient, reflectivity coefficient, absorption coefficient and energy-loss function, for polarized incident radiation along the [100], [010] and [001] directions were investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号