首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

2.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

3.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

4.
The paper reports on the temperature dependence of the electrical and thermal conductivity, Hall constant, and Seebeck coefficient of Bi2−xInxSe3 (x=0, 0.2, 0.4) single crystals measured over the temperature range from 2 to 300 K. One single-valley conduction band model is used to interpret relations among transport coefficients. The data analysis relies on the use of a mixed carrier scattering mechanism consisting of acoustic scattering and scattering on ionized impurities. The effect of In incorporation into the Bi2Se3 crystal lattice on the individual components of thermal conductivity is evaluated and discussed.  相似文献   

5.
Experimental and theoretical studies of the electronic and optical properties of orthorhombic BaCu2Se2 and BaCu2Te2 are reported. Experimental data include the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, and lattice constants for , and optical transmission and diffuse reflectance data at room temperature. Nominally stoichiometric, polycrystalline samples form with hole concentrations inferred from Hall measurements of 2×1018 and 5×1019 cm−3 near room temperature for the selenide and telluride, respectively. The corresponding mobilities are near 15 cm2 V−1 s−1 for both materials. Optical measurements reveal a transition near 1.8 eV in BaCu2Se2, while no similar feature was observed for BaCu2Te2. First principles calculations indicate both materials are direct or nearly direct gap semiconductors with calculated gaps near 1.0 eV and 1.3 eV for the telluride and selenide, respectively, and predict weak absorption below about 2 eV. Transport properties calculated from the electronic structure are also presented.  相似文献   

6.
Mg3Sb2 has been prepared by direct reaction of the elements. Powder X-ray diffraction, thermal gravimetric, differential scanning calorimetery, and microprobe data were obtained on hot pressed samples. Single phase samples of Mg3Sb2 were prepared and found to contain oxygen at the grain boundaries and to lose Mg and oxidize at temperatures above 900 K. Thermoelectric properties were characterized by Seebeck, electrical resistivity, and thermal conductivity measurements from 300 to 1023 K, and the maximum zT was found to be 0.21 at ∼875 K.  相似文献   

7.
The title compound was prepared as single crystals using an aluminum flux technique. Single crystal and powder X-ray diffraction indicate that this composition crystallizes in the clathrate type-I structure, space group Pm3?n. Electron microprobe characterization indicates the composition to be Ba8−ySryAl14.2(2)Si31.8(2) (0.77<y<1.3). Single-crystal X-ray diffraction data (90 and 12 K) were refined with the Al content fixed at the microprobe value (12 K data: R1=0.0233, wR2=0.0441) on a crystal of compositions Ba. The Sr atom preferentially occupies the 2a position; mixed Al/Si occupancy was found on all framework sites. These refinements are consistent with a fully occupied framework and nearly fully occupied cation guest sites as found by microprobe analysis. Temperature dependent electrical resistivity and thermal conductivity have been measured from room temperature to 1200 K on a hot-pressed pellet. Electrical resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity is between 22 and 25 mW/cm K. The sample shows n-type conductivity with a maximum figure of merit, zT of 0.3 at 1200 K. A single parabolic band model predicts a five-fold increase in zT at 800 K if carrier concentration is lowered.  相似文献   

8.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

9.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

10.
Brownmillerite calcium ferrite was synthesized in air at 1573 K and thermoelectric properties (direct current electrical conductivity σ, Seebeck coefficient α, thermal conductivity κ, thermal expansion αL) were measured from 373 to 1050 K in air. Seebeck coefficient was positive over all temperatures indicating conduction by holes, and electrical properties were continuous through the Pnma-Imma phase transition. Based on the thermopower and conductivity activation energies as well as estimated mobility, polaron hopping conduction was found to dominate charge transport. The low electrical conductivity, <1 S/cm, limits the power factor (α2σ), and thus the figure of merit for thermoelectric applications. The thermal conductivity values of ∼2 W/mK and their similarity to Ruddlesden-Popper phase implies the potential of the alternating tetrahedral and octahedral layers to limit phonon propagation through brownmillerite structures. Bulk linear coefficient of thermal expansion (∼14×10−6 K−1) was calculated from volume data based on high-temperature in situ X-ray powder diffraction, and shows the greatest expansion perpendicular to the alternating layers.  相似文献   

11.
The calcium cobalt oxide CaCo2O4 was synthesized for the first time and characterized from a powder X-ray diffraction study, measuring magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power. CaCo2O4 crystallizes in the CaFe2O4 (calcium ferrite)-type structure, consisting of an edge- and corner-shared CoO6 octahedral network. The structure of CaCo2O4 belongs to an orthorhombic system (space group: Pnma) with lattice parameters, a=8.789(2) Å, b=2.9006(7) Å and c=10.282(3) Å. Curie-Weiss-like behavior in magnetic susceptibility with the nearly trivalent cobalt low-spin state (Co3+, 3d, S=0), semiconductor-like temperature dependence of resistivity (ρ=3×10−1 Ω cm at 380 K) with dominant hopping conduction at low temperature, metallic-temperature-dependent large thermoelectric power (Seebeck coefficient: S=+147 μV/K at 380 K), and Schottky-type specific heat with a small Sommerfeld constant (γ=4.48(7) mJ/Co mol K2), were observed. These results suggest that the compound possesses a metallic electronic state with a small density of states at the Fermi level. The doped holes are localized at low temperatures due to disorder in the crystal. The carriers probably originate from slight off-stoichiometry of the phase. It was also found that S tends to increase even more beyond 380 K. The large S is possibly attributed to residual spin entropy and orbital degeneracy coupled with charges by strong electron correlation in the cobalt oxides.  相似文献   

12.
The layered cobaltate La0.30CoO2 was prepared from NaxCoO2 precursor by a solid-state ionic exchange and was characterized by means of X-ray and neutron diffraction, magnetic, thermal and electric transport measurements. The compound consists of hexagonal sheets of edge-sharing CoO6 octahedra interleaved by lanthanum monolayers. Compared to Na+ in the parent system, the La3+ ions occupy only one-third of available sites, forming a 2-dimensional superstructure. The deviation from the ideal stoichiometry La1/3CoO2 introduces extra hole carriers into the diamagnetic LS Co3+ matrix making the sample Pauli paramagnetic. The temperature dependence of the electrical conductivity in La0.30CoO2 follows Mott's T−1/3 law up to about 400 K, which is in contrast with the standard metallic behavior in the Na+ homolog possessing the same formal doping. The experiments are complemented by electronic structure calculations for La0.30CoO2 and related NaxCoO2 systems.  相似文献   

13.
A-site substituted cerium orthovanadates, Ce1−xSrxVO4, were synthesised by solid-state reactions. It was found that the solid solution limit in Ce1−xSrxVO4 is at x=0.175. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd (1 4 1) with a=7.3670 (3) and c=6.4894 (1) Å for Ce0.825Sr0.175VO4. The UV-vis absorption spectra indicated that the compounds have band gaps at room temperature in the range 4.5-4.6 eV. Conductivity measurements were performed for the first time up to the strontium solid solution limit in air and in dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 30 mS cm−1 in air to 30-45 mS cm−1 in reduced atmosphere. Sample Ce0.825Sr0.175VO4 is redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

14.
Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi2−xSbxTe3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi2−xSbxTe3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.  相似文献   

15.
Crystals of Sc2AlB6 were grown using scandium oxide and elemental boron as starting materials in a self-component aluminum solution under an argon atmosphere. The growth conditions for obtaining single crystals of relatively large size were investigated. Sc2AlB6 single crystals were obtained in the form of prisms extending in the b-axis direction. The largest Sc2AlB6 crystals prepared had maximum dimensions of about 0.4×0.4×4.2 mm3. The values of the Vickers microhardness and the electrical resistivity of Sc2AlB6 crystals are 12.7±0.8 GPa and 43±8 μΩ cm, respectively. The oxidation of Sc2AlB6 crystals starts at about 773°C, and the weight gain after TG determination is 12.9 mass% at 1200°C. The oxidation products of Sc2AlB6 crystals could not determined.  相似文献   

16.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

17.
Incorporation of the transition metal elements in the tetradymite structure of Sb2Te3 has a strong influence on electronic properties. Recent studies have indicated that Mn substitutes on the Sb sublattice increases the carrier concentration of holes. However, the doping efficiency of Mn appears rather low in comparison to what it should be based on the measurements of magnetization, structural analysis, and transport properties. In this paper we address this issue by making detailed studies of the Hall effect and electrical resistivity and we explain the results with the aid of a model that takes into account interactions of the Mn impurity with the native defects in antimony telluride. Specifically, we find that Mn atoms interact with antisite defects (antimony atoms located on the tellurium sublattice), a process that decreases the density of antisite centers and generates free electrons. These, in turn, recombine with holes and thus decrease their concentration and the apparent Mn doping efficiency.  相似文献   

18.
Using Na2CO3-H3BO3-NaF as fluxes, transparent RE:Na3La9O3(BO3)8 (abbr. RE:NLBO, RE=Er, Yb) crystals have been grown by the top seed solution growth (TSSG) method. The X-ray powder diffraction analysis shows that the RE:NLBO crystals have the same structure with NLBO. The element contents were determined by molar to be 0.64% Er3+ in Er:NLBO, 2.70% Yb3+ in Yb:NLBO, respectively. The polarized absorption spectra of RE:NLBO have been measured at room temperature and show that both Er:NLBO and Yb:NLBO have a strong absorption bands near 980 nm with wide FWHM (Full Wave at Half Maximum) (21 nm for Er:NLBO and 25 nm for Yb:NLBO). Fluorescence spectra have been recorded. Yb:NLBO has the emission peaks at 985 nm, 1028 nm and 1079 nm and the emission peak of Er:NLBO is at 1536 nm. Spectral parameters have been calculated by the Judd-Ofelt theory for Er:NLBO and the reciprocity method for Yb:NLBO, respectively. The calculated values show that Er:NLBO is a candidate of 1.55 μm laser crystals and Yb:NLBO is a candidate for self-frequency doubling crystal.  相似文献   

19.
Single crystals of calcium ferrite CaFe2O4-type NaTi2O4 having millimeter-sized needle shapes were synthesized by a reaction of Na metal and TiO2 in a sealed iron vessel at 1473 K. Sodium-deficient NaxTi2O4 single crystals with 0.558<x<1 were successfully synthesized by a topotactic oxidation reaction using NaTi2O4 single crystals as parent materials. The crystal structures of NaxTi2O4 with x=0.970, 0.912, 0.799, 0.751, 0.717, 0.686, 0.611, and 0.558 were determined by the single-crystal X-ray diffraction method. The basic framework constructed by the Ti1O6 and Ti2O6 double rutile chains was maintained in these NaxTi2O4 compounds. Based on the results of bond valence analysis, we speculated that the Ti1 sites are preferentially occupied by Ti3+ cations over the compositional range of 0.8<x<1, while both the Ti1 and Ti2 sites are randomly occupied by Ti3+ and Ti4+ cations at x=0.558. Magnetic susceptibility data indicated that the broad maximum around 40 K observed in as-grown NaTi2O4 is suppressed by an Na deficiency and vanishes in Na0.717Ti2O4. The electrical resistivity increased with the Na deficiency; however, it was still semiconductive in Na0.799Ti2O4.  相似文献   

20.
The comprehensive study of conductivity σ, Hall coefficient RH and Seebeck coefficient S has been carried out on high-quality single crystals of CeB6 in a wide range of temperatures 1.8-300 K. An anomalous behavior of all transport characteristics (σ, RH, S) was found for the first time in the vicinity of T*≈80 K. The strong decrease of conductivity σ as well as the unusual asymptotic behavior of Seebeck coefficient S(T)∼−ln T observed below T* allowed us to conclude in favor of crossover between different regimes of charge transport in CeB6. The pronounced change of Hall mobility μH, which diminishes from the maximum value of 20 cm2/(V s) at T* to the values of ∼6 cm2/(V s) at T∼10 K, seems to be attributed to the strong enhancement of charge carriers scattering due to fast spin fluctuations on Ce-sites. The low-temperature anomalies of the charge transport characteristics are compared with the predictions of the Kondo-lattice model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号