首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The luminescence hosts K3YF6 and K3GdF6 were obtained in a single-crystal form. Their crystal structure was determined from single-crystal X-ray diffraction data. Both crystals adopt monoclinic system with space group P21/n, Z=2. Lattice parameters for K3YF6 are refined to the following values , , , β=90.65(3) and for K3GdF6, , , β=90.80(3). The vibrational analysis, IR and Raman spectroscopy at room temperature, was applied to these compounds in order to study the site symmetry of Y3+ and Gd3+ ions.  相似文献   

2.
The crystal structure of Cs0.86(NH4)1.14SO4·Te(OH)6 is determined by X-ray diffraction analysis. The space group is P21/c with , , , β=106.65(3)° and Z=4 at 293 K. The structure is refined to R=2.9%. The distribution of atoms can be described as isolated TeO6 octahedra and SO4 tetrahedra. The Cs+ and NH4+ cations, occupying the same positions, are located between these polyhedra. The main feature of this structure is the coexistence of two types of anions in the same crystal related by network hydrogen bonds.The mixed solid solution cesium ammonium sulphate tellurate exhibits two phase transitions at 470 and 500 K. These transitions, detected by differential scanning calorimetric, are analyzed by dielectric measurements using the impedance and modulus spectroscopy techniques.  相似文献   

3.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

4.
The magnetic and transport properties of a hexagonal cobaltite related to the perovskite structure have been studied. By combining transmission electron microscopy, X-ray powder diffraction and iodometric titration, it is found that Ba0.9CoO2.6 crystallizes in the 12H structure [P63/mmc, a=5.6612 (1) Å and c=28.4627(8) Å]. Interestingly, this compound is a ferromagnet with a Curie temperature TC=50 K and a saturation magnetization . This value is smaller than expected from the effective paramagnetic moment, μeff=3.7μB/Co, corresponding to an average spin per Co, from which one would expect . This suggests either a canted structure or a strong local magnetic anisotropy related to the crystal field of the CoOn polyhedra. A clear transition in the electrical resistivity is found at TC consistent with a spin scattering reduction as the sample becomes ferromagnetic. The spin-charge coupling is evidenced by the large negative magnetoresistance effect optimum near TC=50 K, with .  相似文献   

5.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

6.
The organic-inorganic hybrid materials vanadium oxide [VIVO2(phen)2]·6H2O (1) and [(2,2′-bipy)2VVO2](H2BO3)·3H2O (2) have been conventional and hydrothermal synthesized and characterized by single crystal X-ray diffraction, elemental analyses, respectively. Although the method and the ligand had been used in the syntheses of the compounds (1) and (2) are different, they almost possess similar structure. They all exhibit the distorted octahedral [VO2N4] unit with organonitrogen donors of the phen and 2,2′-bipy ligands, respectively, which coordinated directly to the vanadium oxide framework. And they are both non-mixed-valence complexes. But the compound (1) is isolated, and the compound (2) consists of a cation of [(2,2′-bipy)2VVO2]+ and an anion of (H2BO3). So the valence of vanadium of (1) and (2) are tetravalence and pentavalence, respectively. Meanwhile it is noteworthy that π-π stacking interaction between adjacent phen and 2,2′-bipy groups in compounds 1 and 2 also play a significant role in stabilization of the structure. Thus, the structure of [VIVO2(phen)2]·6H2O and [(2,2′-bipy)2VVO2](H2BO3)·3H2O are both further extended into interesting three-dimensional supramolecular. Crystal data: (1) Triclinic, a=8.481(4), b=12.097(5), and α=66.32(2), β=82.97(3), and γ=82.59(4)°, Z=2, R1=0.0685, wR2=0.1522. (2) Triclinic, a=6.643(13), b=11.794(2), and α=101.39(3), β=101.59(3), and γ=97.15(3)°, Z=2, R1=0.0736, wR2=0.1998.  相似文献   

7.
The crystal structures of the title compounds were solved using the single-crystal X-ray diffraction technique. At room temperature CsKSO4Te(OH)6 was found to crystallize in the monoclinic system with Pn space group and lattice parameters: ; ; ; β=106.53(2)°; ; Z=4 and . The structural refinement has led to a reliability factor of R1=0.0284 (wR2=0.064) for 7577 independent reflections. Rb1.25K0.75SO4Te(OH)6 material possesses a monoclinic structure with space group P21/a and cell parameters: ; ; ; β=106.860(10)°; ; Z=4 and . The residuals are R1=0.0297 and wR2=0.0776 for 3336 independent reflections. The main interest of these structures is the presence of two different and independent anionic groups (TeO66− and SO42−) in the same crystal.Complex impedance measurements (Z*=ZiZ) have been undertaken in the frequency and temperature ranges 20-106 Hz and 400-600 K, respectively. The dielectric relaxation is studied in the complex modulus formalism M*.  相似文献   

8.
The first example of a unidimensional zirconium hydroxide fluoride was synthesized under mild solvothermal treatment and characterized by X-ray diffraction and thermal techniques. Monoprotonated ethylenediamine cations reside between the anionic chains. Crystal data for this material are as follows: [C2N2H9][Zr(OH)2F3], M=243.35, orthorhombic, space group Pca21, a=6.8016(13), b=6.1393(12), , , , Z=4, , μ(Mo-Kα)=1.777 mm−1, . The material transforms to an unknown layered material at ∼175 °C, a common occurrence for 1D structures where the chains are arranged in hydrogen-bonded layers and separated by interlayer organoammoniums. Collapse to the known condensed mineral phase Zr(FO)2.7 occurs at ca. 275 °C before finally transforming to the baddeleyite form of ZrO2 at ca. 460 °C.  相似文献   

9.
10.
The enthalpies of solution were determined for 1,1,3,3-tetramethylurea in ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol (2-methyl-2-propanol). Measurements were made at 298.15 K and molalities m ≅ (0.007 to 0.036) mol · kg−1 with a precise isoperibol ampoule-type calorimeter. Standard enthalpies of solution and transfer from one alkanol to the other (including methanol) were calculated. The obvious relationship between the enthalpic and volumetric effects of solution of tetramethylurea in the n-alkanols (C1-C4) was discovered. The enthalpic effects of transfer caused by branching of the alkanol molecules, 1-propanol → 2-propanol, and 1-butanol → t-butanol, are opposite in sign and dominated by the configurational changes in the solvation environment of tetramethylurea.  相似文献   

11.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

12.
A ferroelectric crystal (C3N2H5)5Sb2Br11 has been synthesized. The single crystal X-ray diffraction studies (at 300, 155, 138 and 121 K) show that it is built up of discrete corner-sharing bioctahedra and highly disordered imidazolium cations. The room temperature crystal structure has been determined as monoclinic, space group, P21/n with: , and and β=96.19°. The crystal undergoes three solid-solid phase transitions: ) discontinuous, continuous and discontinuous. The dielectric and pyroelectric measurements allow us to characterize the low temperature phases III and IV as ferroelectric with the Curie point at 145 K and the saturated spontaneous polarization value of the order of along the a-axis (135 K). The ferroelectric phase transition mechanism at 145 K is due to the dynamics of imidazolium cations.  相似文献   

13.
Crystal structure and phase transformations of calcium yttrium orthophosphate Ca3Y(PO4)3 were investigated by X-ray powder diffraction, selected-area electron diffraction, transmission electron microscopy and optical microscopy. The high-temperature phase is isostructural with eulytite, cubic (space group ) with a=0.983320(5) nm, V=0.950790(8) nm3, Z=4 and Dx=3.45 Mg m−3. The crystal structure was refined with a split-atom model, in which the oxygen atoms are distributed over two partially occupied sites. Below the stable temperature range of eulytite, the crystal underwent a martensitic transformation, which is accompanied by the formation of platelike surface reliefs. The inverted crystal is triclinic (space group P1) with a=1.5726(1) nm, b=0.84267(9) nm, c=0.81244(8) nm, α=109.739(4)°, β=90.119(5)°, γ=89.908(7)°, V=1.0134(1) nm3, Z=4 and Dx=3.24 Mg m−3. The crystal grains were composed of pseudo-merohedral twins. The adjacent twin domains were related by the pseudo-symmetry mirror planes parallel to with the composition surface . When the eulytite was cooled relatively slowly from the stable temperature range, the decomposition reaction of Ca3Y(PO4)3β-Ca3(PO4)2+YPO4 occurred.  相似文献   

14.
The synthesis, single crystal structure determination, and Raman spectrum are reported for colorless transparent tribarium disodium tetracyanamide, Ba3Na2(CN2)4. The title compound crystallizes in the space group C2h5-P21/c (#14, , , , β=110.454(4)°, , Z=4, R/wR=0.0266/0.0543). Each sodium atom is surrounded by six nitrogen atoms in octahedral geometry. Sodium centered nitrogen octahedra are linked through face-sharing along the [100] direction to form one-dimensional (1D) chains. These chains are connected to each other through the carbon atoms of cyanamide and make a three-dimensional (3D) network with 1D channels along the [100] direction. Barium atoms and additional cyanamide anions reside in the channels. Each barium atom is irregularly coordinated with nitrogen and carbon from the cyanamide anions. The Raman spectrum shows symmetric vibrations of [NCN]2− corresponding to νsym (1241.5 cm−1) and 2δ (1356.4 cm−1).  相似文献   

15.
The study of curium iodate, Cm(IO3)3, was undertaken as part of a systematic investigation of the 4f- and 5f-elements’ iodates. The reaction of 248CmCl3 with aqueous H5IO6 under mild hydrothermal conditions results in the reduction of IO65− to IO3 anions, and the subsequent formation of Cm(IO3)3 single crystals. Crystallographic data are: (193 K, MoKα, ): monoclinic, space group P21/c, , , , β=100.142(2)°, V=811.76(14), Z=4, R(F)=2.11%, for 119 parameters with 1917 reflections with I>2σ(I). The structure consists of Cm3+ cations bound by iodate anions to form [Cm(IO3)8] units, where the local coordination environment around the curium centers can be described as a distorted dodecahedron. There are three crystallographically unique iodate anions within the structure; two iodates bridge between three Cm centers, and one iodate bridges between two Cm centers and has a terminal oxygen atom. The bridging of the curium centers by the iodate anions creates a three-dimensional structure. Three strong Raman bands with comparable intensities were observed at 846, 804, and 760 cm−1 and correspond to the I-O symmetric stretching of the three crystallographically distinct iodate ions. The Raman profile suggests a lack of inter-ionic vibrational coupling of the I-O stretching, while intra-ionic coupling provides symmetric and asymmetric components that correspond to each iodate site. Repeated collection of X-ray diffraction data for a crystal of Cm(IO3)3 over a period of time revealed a gradual expansion of the unit cell from self-irradiation. After 71 days, the new parameters were: , , , β=100.021(2)°, V=818.3(2).  相似文献   

16.
Three new hydrated scandium selenites have been hydrothermally synthesized as single crystals and structurally and physically characterized. Sc2(SeO3)3·H2O crystallizes as a new structure type containing novel ScO7 pentagonal bipyramidal and ScO6+1 capped octahedral coordination polyhedra. Sc2(SeO3)3·3H2O contains typical ScO6 octahedra and is isostructural with its M2(SeO3)3·3H2O (M=Al, Cr, Fe, Ga) congeners. CsSc3(SeO3)4(HSeO3)2·2H2O contains near-regular ScO6 octahedra and has essentially the same structure as its indium-containing analogue. All three phases contain the expected pyramidal [SeO3]2- selenite groups. Crystal data: Sc2(SeO3)3·3H2O, Mr=524.85, trigonal, R3c (No. 161), , , , Z=6, R(F)=0.018, wR(F2)=0.036; Sc2(SeO3)3·H2O, Mr=488.82, orthorhombic, P212121 (No. 19), , , , , Z=4, R(F)=0.051, wR(F2)=0.086; CsSc3(SeO3)4(HSeO3)2·2H2O, Mr=1067.60, orthorhombic, Pnma (No. 62), , , , , Z=4, R(F)=0.035, wR(F2)=0.070.  相似文献   

17.
Three novel Th(IV) compounds containing heavy oxoanions, Th(SeO3)(SeO4) (1), Th(IO3)2(SeO4)(H2O)3·H2O (2), and Th(CrO4)(IO3)2 (3), have been synthesized under mild hydrothermal conditions. Each of these three distinct structures contain trigonal pyramidal and tetrahedral oxoanions. Compound 1 adopts a three-dimensional structure formed from ThO9 tricapped trigonal prisms, trigonal pyramidal selenite, SeO32-, anions containing Se(IV), and tetrahedral selenate, SeO42-, anions containing Se(VI). The structure of 2 contains two-dimensional porous sheets and occluded water molecules. The Th centers are found as isolated ThO9 tricapped trigonal prisms and are bound by four trigonal pyramidal iodate anions, two tetrahedral selenate anions, and three coordinating water molecules. In the structure of 3, the Th(IV) cations are found as ThO9 tricapped trigonal prisms. Each Th center is bound by six IO31- anions and three CrO42- anions forming a chiral three-dimensional structure. Second-harmonic generation of 532 nm light from 1064 nm radiation by a polycrystalline sample of 3 was observed. Crystallographic data (193 K, MoKα, λ=0.71073): 1; monoclinic, P21/c; , , , β=103.128(1), Z=4, R(F)=2.47% for 91 parameters with 1462 reflections with I>2σ(I); 2, monoclinic, P21/n, , , , β=100.142(2), Z=4, R(F)=4.71% for 158 parameters with 2934 reflections with I>2σ(I); 3, orthorhombic, P212121, , , , Z=4, R(F)=2.04% for 129 parameters with 2035 reflections with I>2σ(I).  相似文献   

18.
Three new alkaline earth-zirconium oxalates M2Zr(C2O4)4·nH2O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M2+ and Zr4+ ions through silica gel containing oxalic acid. Ba2Zr(C2O4)4·7H2O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), , , , Z=4, R=0.0427; Sr2Zr(C2O4)4·11H2O, tetragonal, space group I41/acd, a=16.139(4), , ,Z=8, R=0.0403; Ca2Zr(C2O4)4·5H2O, orthorhombic, space group Pna21, a=8.4181(5), b=15.8885(8), , , Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO6(H2O)x (x=2 or 3) polyhedra connected to ZrO8 polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO8 polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M2+ cations (Sr2+, Ca2+), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba2+ cation, the second framework is formed and is closely related to that of Pb2Zr(C2O4)4·nH2O. The decomposition at 800°C into strontium carbonate, barium carbonate or calcium oxide and MZrO3 (M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.  相似文献   

19.
Single crystals of the potassium uranyl iodate, K[UO2(IO3)3] (1), have been grown under mild hydrothermal conditions. The structure of 1 contains two-dimensional sheets extending in the [ab] plane that consist of approximately linear UO22+ cations bound by iodate anions to yield UO7 pentagonal bipyramids. There are three crystallographically unique iodate anions, two of which bridge between uranyl cations to create sheets, and one that is monodentate and protrudes in between the layers in cavities. K+ cations form long ionic contacts with oxygen atoms from the layers forming an eight-coordinate distorted dodecahedral geometry. These cations join the sheets together. Ion-exchange reactions have been carried out that indicate the selective uptake of Cs+ over Na+ or K+ by 1. Crystallographic data (193 K, MoKα, ): 1, orthorhombic, Pbca, a=11.495(1) Å, b=7.2293(7) Å, c=25.394(2) Å, Z=8, R(F)=1.95% for 146 parameters with 2619 reflections with I>2σ(I).  相似文献   

20.
The copper vanadium oxide bronze Cu2.33−xV4O11 exhibits a three part composite structure refined on the basis of XRD low-temperature studies. It crystallizes in the triclinic system with the non-centric superspace group X1 and cell parameters ; ; ; α=90.0°; β=101.95(3)°; γ=90.0° with a modulation q-vector equal to (0,0.11,0). The three different parts of this composite structure differ by their b-unit cell repeat defined as b1 ; () and (). These parts are respectively associated to the V4O11 substructure and to each of the two different copper sites. Such refinement allows us to describe the structure using only one and fully occupied crystallographic site for each of the Cu ions. The maximum composition (x=0) is then achieved. Bond valence sum calculations on the basis of such composite structure is in agreement with electronic structure calculation made using the average one and allows us to attribute the proper valence state to each Cu ions. Then, the calculated ratio appears, contrary to the average structure, in prefect agreement with the one deduced from XPS experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号