首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New niobium oxynitrides containing either magnesium or silicon were prepared at 1000 °C by ammonia nitridation of oxide precursors obtained via the citrate route. The products had rock-salt type crystal structures. Crystallinity was improved by annealing in 0.5 MPa N2 and the final compositions were (Nb0.95Mg0.05)(N0.92O0.08) at 1500 °C and (Nb0.87Si0.090.04)(N0.87O0.13) at 1200 °C. The magnesium and oxide ions partially co-substitute the niobium and nitride ions in the octahedral sites of the δ-NbN lattice, respectively. Silicon ions were also successfully doped together with oxide ions into the rock-salt type NbN lattice. The Si doped product exhibited relatively large displacement at the octahedral sites and was accompanied by a small amount of cation vacancies. Superconductivity was improved by annealing to obtain critical temperatures/volume fractions of Tc=17.6 K/100% for Mg- and Tc=16.2 K/95% for the Si-doped niobium oxynitrides.  相似文献   

2.
Following growing interest in the use of ammonia as a fuel in solid oxide fuel cells (SOFCs), we have investigated the possible reaction between the apatite silicate/germanate electrolytes, La8+xSr2−x(Si/Ge)6O26+x/2, and NH3 gas. We examine how the composition of the apatite phase affects the reaction with ammonia. For the silicate series, the results showed a small degree of N incorporation at 600 °C, while at higher temperatures (800 °C), substantial N incorporation was observed. For the germanate series, partial decomposition was observed after heating in ammonia at 800 °C, while at the lower temperature (600 °C), significant N incorporation was observed. For both series, the N content in the resulting apatite oxynitride was shown to increase with increasing interstitial oxide ion content (x/2) in the starting oxide. The results suggest that the driving force for the nitridation process is to remove the interstitial anion content, such that for the silicates the total anion (O+N) content in the oxynitrides approximates to 26.0, the value for an anion stoichiometric apatite. For the germanates, lower total anion contents are observed in some cases, consistent with the ability of the germanates to accommodate anion vacancies. The removal of the mobile interstitial oxide ions on nitridation suggests problems with the use of apatite-type electrolytes in SOFCs utilising NH3 at elevated temperatures.  相似文献   

3.
TiN nanorods were synthesized using electrospinning technique followed by thermolysis in different atmospheres. A dimethyl formamide-ethanol solution of poly-(vinyl pyrrolidone) and Ti (IV)-isopropoxide was used as the electrospinning precursor solution and as-spun nanofibers were calcined at 500 °C in air to generate TiO2 nanofibers. Subsequently, a conversion from TiO2 nanofibers to TiN nanorods was employed by the nitridation treatment at 600∼1400 °C in ammonia atmosphere. A typical characteristic of the final products was that the pristine nanofibers were cut into nanorods. The conversion from TiO2 to TiN was realized when the nitridation temperature was above 800 °C. As-prepared nanorods were composed of TiN nano-crystallites and the average crystallite size gradually increased with the increase of the nitridation temperature. Electrochemical properties of TiN nanorods showed strong dependence on the nitridation temperature. The maximum value of the specific capacitance was obtained from the TiN nanorods prepared at 800 °C.  相似文献   

4.
The synthesis, crystal structure, thermal stability and absorbance spectra of perovskite-type oxynitrides with the general formula SrTi1−xNbx(O,N)3 (x=0.05, 0.10, 0.20, 0.50, 0.80, 0.90, 0.95) have been investigated. Oxide samples were prepared by a polymerized complex synthesis route and post-treated under ammonia at 850 °C for 24 h to substitute nitrogen for oxygen. Synchrotron X-ray powder diffraction (XRD) evidenced that the mixed oxide phases were all transformed into oxynitrides with perovskite-type structure during a thermal ammonolysis. SrTi1−xNbx(O,N)3 with compositions x≤0.80 crystallized in a cubic and samples with x≥0.90 in a tetragonal structure. The Rietveld refinement indicated a continuous enlargement of the lattice parameters towards higher niobium content of the samples. Thermogravimetric analysis (TGA) and hotgas extraction revealed the dependence of the nitrogen incorporation upon the degree of niobium substitution. It showed that more nitrogen was detected in the samples with higher niobium content. Furthermore, TGA disclosed stability for all oxynitrides at T≤400 °C. Diffuse reflectance spectroscopy indicated a continuous decrease of the band gap’s width from 3.24 eV (SrTi0.95Nb0.05 (O,N)3) to 1.82 eV (SrTi0.05Nb0.95(O,N)3) caused by the increasing amount of nitrogen towards the latter composition.  相似文献   

5.
Application of Alumina Aerogels as Catalysts   总被引:2,自引:0,他引:2  
Al2O3 gels prepared by hydrolysis of Al-alkoxide were applied as catalysts for NO reduction by hydrocarbon. Xerogels were obtained by drying at 90°C, for 24 h, in air. Aerogels were prepared by supercritical drying of the wet gels in ethanol, using an autoclave. The catalyst activity of the gels for NO reduction with C3H6 as determined at 200–600°C in a fixed bed flow reactor. NO conversion to N2 was about 60% at 550°C with both catalysts, and at 600°C it was better with the aerogel than with the xerogel. The specific surface area of the xerogel, which was larger than that of the aerogel as-dried, decreased to 1/3 by annealing at >500°C. However, the surface area of the aerogel hardly changed by annealing at temperatures up to 700°C. The bimodal pore size distribution of the aerogel hardly changed by annealing, too. The microstructure of the aerogels is stable at high temperatures, and they are better catalysts at high temperatures.  相似文献   

6.
This work deals with the preparation of aluminosilicate aerogels, especially mullite (3Al2O3·2SiO2) and cordierite (2MgO·2Al2O3·5SiO2) aerogels, from the cohydrolysis of tetraethoxysilane and chelated aluminum-secbutylate; in the case of cordierite magnesium nitrate was added. The influence of various preparation conditions on the aerogel synthesis is described. Crystallization and sintering behavior of mullite aerogels supercritically dried in acetone or alcohol differs from that one of mullite aerogels dried in CO2. During non-isothermal heat treatment the former show a drastically reduced shrinkage compared to the latter. This behavior can be explained by a phase separation during the high temperature autoclaving process. In cordierite aerogels the crystallization of tetragonal mullite at about 1000°C is observed, while the correspondent xerogels show the crystallization of - and - cordierite between 1000 and 1100°C. On the other hand sintering is promoted in cordierite aerogels, which is due to the content of MgO.  相似文献   

7.
This study deals with the reduction of Fe3O4 by H2 in the temperature range of 210-950 °C. Two samples of Fe3O4 produced at 600 and 1200 °C, designated as Fe3O4(600) and Fe3O4(1200), have been used as starting material.Reduction of Fe3O4(600) by H2 is characterized by an apparent activation energy ‘Ea’ of 200, 71 and 44 kJ/mol at T < 250 °C, 250 °C < T < 390 °C and T > 390 °C, respectively. The important change of Ea at 250 °C could be attributed to the removal of hydroxyl group and/or point defects of magnetite. This is confirmed during the reduction of Fe3O4(1200). While transition at T ≈ 390 °C is probably due to sintering of the reaction products as revealed by SEM.In situ X-rays diffraction reduction experiments confirm the formation of stoichiometric FeO between 390 and 570 °C. At higher temperatures, non-stoichiometric wüstite is the intermediate product of the reduction of Fe3O4 to Fe.The physical and chemical modifications of the reduction products at about 400 °C, had been confirmed by the reduction of Fe3O4(600) by CO and that of Fe3O4(1200) by H2. A minimum reaction rate had been observed during the reduction of Fe3O4(1200) at about 760 °C. Mathematical modeling of experimental data suggests that the reaction rate is controlled by diffusion and SEM observations confirm the sintering of the reaction products.Finally, one may underline that the rate of reduction of Fe3O4 with H2 is systematically higher than that obtained by CO in the explored temperature range.  相似文献   

8.
Acetate containing nickel-zinc hydroxysalts (LHS-Ni-Zn) have been synthesized by coprecipitation and hydrothermal treatment. The acetate anions were exchanged with PW12O403− anions, and optimum conditions to attain the maximum level of W in the compound have been identified. The W intercalated compound was characterized by powder X-ray diffraction, FT-IR spectroscopy, thermogravimetric and differential thermal analyses, scanning electron microscopy and transmission electron microscopy.The exchange of LHS-Ni-Zn with PW12O403− at pH=3 for 72 h leads to a solid with a basal spacing of 9.62 Å and a W content (weight) of 37%. The hydrothermal treatment at 90 °C for 24 h increases this value to 48% with a W/Zn molar ratio of 1.38, which corresponds to a layered compound with lacunary tungstophosphate anions in the interlayer space. The intercalated solid is stable up to 250 °C, the layer structure collapses on dehydroxylation and amorphous compounds were identified at 500 °C. Two crystalline phases, NiO (rock salt) and a solid solution (Zn1−xNix)WO4, were identified by powder X-ray diffraction at high temperature (ca. 1000 °C).  相似文献   

9.
The dehydrogenation reaction of iso-propanol has been investigated in the absence of a hydrogen acceptor. Among different transition metals tested various ruthenium precursors in the presence of phosphine ligands proved to be active catalysts. Best results (turnover frequencies up to 155 h−1 after 2 h) were achieved with RuCl3·xH2O and 2-di-tert-butyl-phosphinyl-1-phenyl-1H-pyrrole 4 at low temperature (90 °C).  相似文献   

10.
Ambient pressure drying has been carried out for the synthesis of silica–titania aerogel monoliths. The prepared aerogels show densities in the range 0.34–0.38 g/cm3. The surface area and pore volume of these mixed oxide aerogels are comparable to those of the supercritically dried ones. The surface area for 5wt% titania aerogel has been found to be as high as 685 m2/g with a pore volume of 2.34 cm3/g and the 10wt% titania aerogel has a surface area of 620 m2/g with a pore volume of 2.36 cm3/g. Some gels were also made hydrophobic by a surface treatment with methyltrimethoxysilane and trimethylchlorosilane. The surface modified aerogels possess high surface areas in the range of 540–640 m2/g, and are thermally stable in terms of retaining hydrophobicity up to a temperature of 520 °C. The pore size distribution of the aerogels clearly indicates the preservation of the aerogel structure. High Resolution Transmission Electron microscopy has been employed to characterise the aerogels and Fourier Transform infrared spectroscopy to study the effect of titania addition to silica and the surface modification. X-ray diffraction patterns were recorded to verify the molecular homogeneity of the aerogel.  相似文献   

11.
The influence of polycaprolatone-triol (PCL-T) on the thermal degradation properties of soy protein isolate (SPI)-based films was studied by thermogravimetry and infrared spectroscopy under nitrogen atmosphere. The results showed that in the absence of PCL-T the thermal degradation began between 292 °C (pure SPI films) and ca. 264 °C (SPI/SDS films with more than 20% of SDS), and these values decreased further to the range 250-255 °C for SPI/SDS/PCL-T films. At the same time, the temperature of maximum degradation rate (Tmax) decreased from 331 °C (pure SPI film) to ca. 280 °C for SPI/SDS/PCL-T films with 39% PCL-T content. This behavior was also confirmed by the activation energy (E) values associated with the thermal degradation process. Apparently, the low thermal stability of PCL-T as compared to other film constituents, along with its plasticizer characteristics, is responsible for the decreased stability of SPI/SDS/PCL-T films. The FTIR spectra of gas products evolved during the thermal degradation indicated the formation of OH, CO2, NH3 and other saturated compounds, suggesting that the reaction mechanism involved simultaneous scission of the C(O)-O polyester bonds and C-N, C(O)-NH, C(O)-NH2 and -NH2 bonds of the protein.  相似文献   

12.
Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO2/Al2O3, H2O/Na2O and Na2O/SiO2 molar ratios of precursors in the two-step process. The surface area and NH4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ∼3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.  相似文献   

13.
Li2CO3 and LiOH·H2O are widely used as Li-precursors to prepare LiFePO4 in solid-phase reactions. However, impurities are often found in the final product unless the sintering temperature is increased to 800 °C. Here, we report that lithium fluoride (LiF) can also be used as Li-precursor for solid-phase synthesis of LiFePO4 and very pure olivine phase was obtained even with sintering at a relatively low temperature (600 °C). Consequently, the product has smaller particle size (about 500 nm), which is beneficial for Li-extraction/insertion in view of kinetics. As for cathode material for Li-ion batteries, LiFePO4 obtained from LiF shows high Li-storage capacity of 151 mAh g−1 at small current density of 10 mA g−1 (1/15 C) and maintains capacity of 54.8 mAh g−1 at 1500 mA g−1 (10 C). The solid-state reaction mechanisms using LiF and Li2CO3 precursors are compared based on XRD and TG-DSC.  相似文献   

14.
The thermal decomposition of syngenite, K2Ca(SO4)2·H2O, formed during the treatment of liquid manure has been studied by thermal gravimetric analysis, differential scanning calorimetry, high temperature X-ray diffraction (XRD) and infrared emission spectroscopy (IES). Gypsum was found as a minor impurity resulting in a minor weight loss due to dehydration around 100 °C. The main endothermic dehydration and decomposition stage of syngenite to crystalline K2Ca2(SO4)3 and amorphous K2SO4 is observed around 200 °C. The reaction involves a solid-state re-crystallisation, while water and the K2SO4 diffuse out of the existing lattice. The additional weight loss steps around 250 and 350 °C are probably due to presence of larger syngenite particles, which exhibit slower decomposition due to the slower diffusion of water and K2SO4 out of the crystal lattice. A minor endothermic sulphate loss around 450 °C is not due to the decomposition of syngenite or its products or of the gypsum impurity. The origin of this sulphate is not clear.  相似文献   

15.
The solid proton conductor, phosphatoantimonic acid, HSbP2O8 · H2O was prepared by ion exchange of the corresponding potassium salt. The composite membranes of SPEEK with up to 40 wt% of HSbP2O8 · H2O were prepared by introducing the solid proton conductor from the aqueous suspension. The composite membranes were characterized using FT-IR, powder X-ray diffraction, SEM, DSC/TGA. Thermal stability of the composite membranes was slightly lower than that of SPEEK. The composite membranes had higher water uptake when compared with SPEEK and the membranes exhibited controlled swelling up to 50 °C. The proton conductivity of the membranes was measured under 100% relative humidity up to 70 °C. The composite membranes showed enhanced proton conductivity up to 20 wt% of HSbP2O8 · H2O and the conductivity was reduced with further increase of HSbP2O8 · H2O loading. A maximum of four-fold increase in proton conductivity at 70 °C was observed for the composite membrane with 20 wt% of solid proton conductor.  相似文献   

16.
In this study, the usability of the plant thistle, Onopordum acanthium L., belonging to the family Asteraceae (Compositae), in liquid fuel production has been investigated. The experiments were performed in a fixed-bed Heinze pyrolysis reactor to investigate the effects of heating rate, pyrolysis temperature and sepiolite percentage on the pyrolysis product yields and chemical compositions. Experiments were carried out in a static atmosphere with a heating rate of 7 °C/min and 40 °C/min, pyrolysis temperature of 350, 400, 500, 550 and 700 °C and particle size of 0.6 < Dp < 0.85 mm. Catalyst experiments were conducted in a static atmosphere with a heating rate of 40 °C/min, pyrolysis temperature of 550 °C and particle size of 0.6 < Dp < 0.85 mm. Bio-oil yield increased from 18.5% to 27.3% with the presence of 10% of sepiolite catalyst at pyrolysis temperature of 550 °C, with a heating rate of 40 °C/min, and particle size of 0.6 < Dp < 0.85 mm. It means that the yield of bio-oil was increased at around 48.0% after the catalyst added. Chromatographic and spectroscopic studies on the bio-oil showed that the oil obtained from O. acanthium L. could be used as a renewable fuels and chemical feedstock.  相似文献   

17.
Interest in improving the optical transmission of sodium silicate-based aerogels by ambient pressure drying led to the synthesis of aerogels using a two-step sol–gel process. To produce optically transparent silica aerogel granules, NH4F (1 M) and HCl (4 M) were used as hydrolyzing and condensation catalysts, respectively. The silica aerogels were characterized by their bulk density, porosity (%), contact angle and thermal conductivity. Optical transmission of as synthesized aerogels was studied by comparing the photos of aerogel granules. Scanning electron microscopic study showed the presence of fractal structures in these aerogels. The degree of transparency in two step sol–gel process-based aerogels is higher than the conventional single step aerogels. The N2 adsorption–desorption analysis depicts that the two step sol–gel based aerogels have large surface areas. Optically transparent silica aerogels with a low density of ∼0.125 g/cc, low thermal conductivity of ∼0.128 W/mK and higher Brunauer, Emmett, and Teller surface area of ∼425 m2/g were obtained by using NH4F (1 M), HCl (4 M), and a molar ratio of Na2SiO3::H2O::trimethylchlorosilane of 1::146.67::9.46. The aerogels retained their hydrophobicity up to 500 °C.  相似文献   

18.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

19.
The hydrogen absorption and desorption properties of the recently found ternary phase YMgGa have been studied. This compound absorbs 2.2 wt% hydrogen during the first cycle, but only 1.1 wt% can be stored reversibly for the following cycles under the applied pressure and temperature conditions. Hydrogen absorption and desorption properties were investigated by measuring the thermal desorption spectra and the pressure-composition isotherms while the crystal structure was determined using X-ray diffraction (XRD). The compound absorbs hydrogen at pressures above 0.2 MPa and 250 °C by decomposing into YH3 and MgGa. This reaction is reversed when heating the hydride in a He atmosphere; hydrogen is released and the YMgGa phase is partially recovered together with YGa2 and YH2. The reformation of YMgGa occurs at temperatures below 450 °C on the expenses of hydrogen desorption from YH2. This is not expected under these temperature conditions as YH2 normally does not desorb hydrogen below 800 °C.  相似文献   

20.
CsAlSi5O12 crystals were synthesized at high temperature by slow cooling of a vanadium oxide flux. Single-crystal X-ray diffraction structure analysis and electron microprobe analyses yielded the microporous CAS zeolite framework structure of Cs0.85Al0.85Si5.15O12 composition. High-temperature single-crystal and powder X-ray diffraction studies were utilized to analyze anisotropic thermal expansion. Rietveld refined cell constants from powder diffraction data, measured in steps of 25 °C up to 700 °C, show a significant decrease in expansion above 500 °C. At 500 °C, a displacive, static disorder-dynamic disorder-type phase transition from the acentric low-temperature space group Ama2 to centrosymmetric Amam (Cmcm in standard setting) was found. Thermal expansion below the phase transition is governed by rigid-body TO4 rotations accompanied by stretching of T-O-T angles. Above the phase transition at 500 °C all atoms, except one oxygen (O6), are fixed on mirror planes. Temperature-dependent polarized Raman single-crystal spectra between −270 and 300 °C and unpolarized spectra between room temperature and 1000 °C become increasingly less resolved with rising temperature confirming the disordered static-disordered dynamic type of the phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号