首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对多孔材料在低温下的传热特性进行了试验研究,试验结果表明在填充多孔材料以后夹板表面低温维持时间明显增加,主要原因是由于多孔材料的参与改变了传热特性,且材料的密度与其传热特性有着密切的关系。在一定范围内,随着多孔材料密度的增大,其传热特性不断增强。  相似文献   

2.
针对大型计算机服务器CPU的耗能量,探讨了一种新的热管排布方式的散热器,并对其散热性能进行了实验研究.研究结果表明,采用此种热管散热器,最高热流密度为74.3W/cm2,其冷却风速控制在4m/s即可满足芯片冷却要求.同时根据模拟计算得到的散热器底板温度分布,可有助于对热管排布方式的优化设计.  相似文献   

3.
Heat transfer over a stretching surface with uniform or variable heat flux in micropolar fluids is investigated in this Letter. The boundary layer equations are transformed into ordinary differential equations, and then they are solved numerically by a finite-difference method. The effects of the material parameter K, Prandtl number Pr, velocity exponent parameter m, and heat flux exponent parameter n on the heat transfer characteristics are studied. It is found that the local Nusselt number is higher for micropolar fluids compared to Newtonian fluids.  相似文献   

4.
Summary The classical Stefan problem assumes a fixed melting temperature. However, when the solid phase is the one with lower density (e.g., water) the solidification of the system causes an overall volume increase that is often contrasted by the container walls. In that case the growing pressure determines a continuous lowering of the freezing point, and the temperature field as well as the interface motion are strongly affected. This paper is concerned with these aspects of the problem; the planar solidification of a slab of finite thickness, contrasted by an opposing elastic force, is numerically simulated. The effects of two different boundary conditions are analysed. When the solidification is driven by convective cooling, the continuous advancement of the melting front is replaced by an asymptotic behaviour, until thermal equilibrium is attained. When the boundary condition is specified in terms of a prescribed heat flow, the melting front velocity is slowed down by a growing adverse temperature gradient. The influence of various parameters on the process is presented and discussed.  相似文献   

5.
胡丽琴  罗小平 《低温与超导》2013,41(7):39-43,80
分别以0.2%、0.5%、1%质量分数的Al2O3-H2O纳米流体和去离子水为实验工质,在高2mm,宽1mm的矩形微细通道内进行纳米流体与非纳米流体两相沸腾传热和压降对比研究。实验结果表明:增加质量通量对两种工质换热系数影响都较小,但增加热流密度可提高换热系数;在相同工况下,与水基液相比,采用Al2O3-H2O纳米流体换热系数明显增大,且随着纳米流体质量分数的增加而增加,对于该实验换热系数可提高8%~17%;随着纳米颗粒质量分数和质量通量的增加,两相摩擦压降显著增大。  相似文献   

6.
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.  相似文献   

7.
This Letter presents a numerical study of the flow and heat transfer of an incompressible FENE-P fluid over a non-isothermal surface. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of the thermal radiation are considered in the energy equation, and the variations of dimensionless surface temperature and dimensionless surface temperature gradient, as well as the heat transfer characteristics with various physical parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with prescribed surface temperature (PST case) and (ii) the sheet with prescribed heat flux (PHF case). Moreover, the mechanical characteristics of the corresponding flow are also presented.  相似文献   

8.
An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.  相似文献   

9.
根据传热传质分离的吸收形式,设计加工了一台溴化锂绝热降膜吸收的实验装置,对溴化锂水溶液在倾斜平板上对水蒸气的吸收特性进行了实验研究,分析了预冷却温差、溶液流量及平板倾角对吸收过程的影响。实验结果表明:预冷却温差、溶液流量及平板倾角越大,溴化锂溶液对水蒸气的吸收效果越好,并认为吸收过程可以分成三个步骤,另外就热质分离吸收器的设计过程中的溴化锂溶液的最小速度提出建议。  相似文献   

10.
Ultrasound is considered to be an effective active heat transfer enhancement method, which is widely used in various fields. But there is no clear understanding of flow boiling heat transfer characteristics in micro/mini-channels under ultrasonic field since the studies related are limited up to now. In this paper, a novel minichannel heat exchanger with two ultrasonic transducers inside the inlet and outlet plenum respectively is designed to experimentally investigate the impacts of ultrasound on flow boiling heat transfer enhancement in a minichannel heat sink. Flow visualization analyses reveal that ultrasound can promote rapid bubble motion, bubble detachment from heating wall surface and thereby new bubble generation, and decrease the length of confined bubble. Furthermore, the flow boiling experiments are initiated employing working fluid R141b at different ultrasonic parameters (e.g., frequency, power, angle of radiation) and heat flux under three types of ultrasound excitations: no ultrasound (NU), single inlet ultrasound (IU), inlet and outlet ultrasound (IOU). The results indicate that ultrasound has obvious augmentation effects on flow boiling heat transfer even though the intensification effects will be limited with the heat flux increases. The higher ultrasonic power, the lower ultrasonic frequency and the higher ultrasonic radiation angle, the better intensification efficiency. The maximum enhancement ratio of have in the saturated boiling section reaches 1.88 at 50 W, 23 kHz and 45° under the experimental conditions. This study will be beneficial for future applications of ultrasound on flow boiling heat transfer in micro/mini-channels.  相似文献   

11.
This Letter discusses the influence of heat transfer and magnetic field on the peristaltic flow of Newtonian fluid in a vertical annulus under a zero Reynolds number and long wavelength approximation. The inner tube is uniform, rigid, while the outer tube has a sinusoidal wave traveling down its wall. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise and frictional forces. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   

12.
This work considers transient radiative and conductive heat transfer in a semitransparent layer of ceramic, submitted to several thermal and radiative boundary conditions. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. The solution procedure must provide accurate temperature distribution in the layer, so a nodal analysis based on Hottel's zonal method extended by ray tracing method is carried out. A finite difference method with non-uniform space and time increments is used to solve the transient energy equation, including a radiative heat source, coupled to a equation of radiative transfer. Variable spacing was used to concentrate grid points in regions with large temperature gradients. The influence of refractive index, optical thicknesses and conduction-radiation parameters is investigated.  相似文献   

13.
In this paper the effects of electrohydrodynamics (EHD) on heat transfer enhancement and flow pattern of R134a two-phase mixture, flowing in a horizontal tube, were numerically investigated. A uniform DC electric field was applied through a circular stainless steel rod along the centerline of tube, while the tube was considered as a grounded electrode. The simulations, in order to investigate the EHD mechanism, were performed for a constant heat flux 2000 W/m2, voltages between 0 and 5 kV, inlet volume fractions 65% and 85%, mass fluxes from 30 kg/m2s to 50 kg/m2s and electrode diameters between 1.57 mm and 2.4 mm. These flow conditions correspond to stratified flow. The flow regime redistributions under the applied electric field was obtained. The results show that the steady state condition was occurred at the time about 900 ms. According to the results, enhancement ratio is directly proportional to voltage, and it is reversely proportional to electrode diameter, mass flux and inlet volume fraction.  相似文献   

14.
Nanofluids, because of their enhanced heat transfer capability as compared to normal water/glycol/oil based fluids, offer the engineer opportunities for development in areas where high heat transfer, low temperature tolerance and small component size are required. In this present paper, the hydrodynamic and thermal fields of a water–γAl2O3 nanofluid in a radial laminar flow cooling system are considered. Results indicate that considerable heat transfer enhancement is possible, even achieving a twofold increase in the case of a 10% nanoparticle volume fraction nanofluid. On the other hand, an increase in wall shear stress is also noticed with an increase in particle volume concentration.  相似文献   

15.
Forced convection heat transfer enhancement with electrohydrodynamic (EHD) technique of turbulent flow inside a smooth channel has been numerically investigated. A two dimensional numerical approach has been chosen to evaluate the local and average heat transfer coefficient. In addition, the swirling flow pattern in the presence of an electric field has been studied. To achieve higher enhancement while using multiple electrodes, variety of electrode arrangements have been examined for specified values of Reynolds number, applied voltage, and wire radius. The results demonstrate that different electrode arrangements cause significant improvement of the heat transfer coefficient.  相似文献   

16.
应用计算流体力学CFD(Computational Fluid Dynamics)方法,对顺人字组合及软硬板组合波纹通道内三维稳态湍流流场进行了数值模拟,定量计算了不同流动速度和不同结构参数下波纹通道的传热因子j和摩擦系数f,得到了波纹通道换热与流动阻力随波纹夹角β及波纹密度λ/h的变化规律,进而对波纹通道进行了整体性能评价,并从场协同理论角度,分析了波纹通道强化换热的机理。  相似文献   

17.
The steady flow of an incompressible viscous fluid due to a rotating disk in a nanofluid is studied. The transformed boundary layer equations are solved numerically by a finite difference scheme, namely the Keller-box method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction parameter φ and suction/injection parameter h0. Two models for the effective thermal conductivity of the nanofluid, namely the Maxwell-Garnett model and the Patel model, are considered. It is found that for the Patel model, the heat transfer rate at the surface increases for both suction and injection, whereas different behaviors are observed for the Maxwell-Garnett model, i.e. increasing the values of φ leads to a decrease in the heat transfer rate at the surface for suction, but increases for injection. The results of this study can be used in the design of an effective cooling system for electronic components to help ensure effective and safe operational conditions.  相似文献   

18.
Surface layer plumes, thermals, downdrafts and roll vortices are the most prominent coherent structures in an unstably stratified boundary layer. They contribute most of the temperature and vertical velocity variance, and their time scales increase with height. The effects of these multi-scale structures (surface layer plumes scale with surface layer depth, thermals scale with boundary layer height and the resulting roll vortices scale with convective time scale) on the surface temperature and ground heat flux were studied using turbulence measurements throughout the atmospheric boundary layer and the surface temperature measurements from an infrared camera. Plumes and thermals imprint on the surface temperature as warm structures and downdrafts imprint as cold structures. The air temperature trace shows a ramp-like pattern, with small ramps overlaid on a large ramp very close to the surface; on the other hand, surface temperature gradually increases and decreases. Turbulent heat flux and ground heat flux show similar patterns, with the former lagging the latter. The maximum values of turbulent heat flux and ground heat flux are 4 and 1.2 times the respective mean values during the ejection event. Surface temperature fluctuations follow a similar power-law exponent relationship with stability as suggested by surface layer similarity theory.  相似文献   

19.
竖直低温星形翅片管表面结霜及传热传质理论模型   总被引:1,自引:1,他引:1  
文中采用维元法建立了竖直星形翅片管表面的非稳态结霜及传热传质模型,重点考虑了霜层表面存在的对流、凝华以及辐射三种传热机理。理论模型的计算结果表明,霜层的生长速度以及霜层表面的温度升高都是一个逐渐变缓的过程。在这个过程中,三种机理的传热分量也随之变化。同时,随着霜层厚度的增加,翅片管整体传热效率降低,管内过冷区和饱和区的长度都被拉长。  相似文献   

20.
A new method for the solution of the radiative transfer equation in spherical media based on a modified discrete ordinates method is extended to study radiative, conductive and convective heat transfer in a semi-transparent scattering porous medium. The set of differential equations is solved using the fourth-order Runge-Kutta method. Various results are obtained for the case of combined radiative and conductive heat transfer, as well as for the interaction of those modes with convection. The effects of some radiative properties of the medium on the heat transfer rate are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号