首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of the lattice Boltzmann method (LBM) recently proposed by Asinari et al. [Asinari P, Mishra SC, Borchiellini R. A lattice Boltzmann formulation to the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transfer B 2010; 57:126–146] is extended to the analysis of transport of collimated radiation in a planar participating medium. To deal with azimuthally symmetric radiation in planar medium, a new lattice structure for the LBM is used. The transport of the collimated component in the medium is analysed by two different, viz., flux splitting and direct approaches. For different angles of incidence of the collimated radiation, the LBM formulation is tested for the effects of the extinction coefficient, the anisotropy factor, and the boundary emissivities on heat flux and emissive power distributions. Results are compared with the benchmark results obtained using the finite volume method. Both the approaches in LBM provide accurate results.  相似文献   

2.
By considering the intensity within a medium to consist of a collimated and a fairly diffuse part, the overall problem of radiative transfer is reduced to two simpler ones: first the collimated intensity is obtained (equivalent in complexity to a nonscattering medium); for the evaluation of the diffuse part of the radiation (due to emission and scattering), a new differential approximation has been developed. To demonstrate the accuracy and simplicity of the present method, two sample cases are presented for which some exact solutions can be found in the literature: results are presented (i) for cosine-varying irradiation incident upon a two-dimensional, isotropically scattering slab and (ii) for irradiation with a Gaussian intensity distribution of a two-dimensional, anisotropically scattering semi-infinite cylindrical medium.  相似文献   

3.
The source function, radiative flux, and intensity at the boundaries are calculated for a two-dimensional, scattering, finite medium subjected to collimated radiation. The scattering phase function is composed of a spike in the forward direction super-imposed on an isotropic background. Exact radiative transfer theory is used to formulate the problem and Ambarzumian's method is used to obtain results. Using the principle of superposition, the results for any step variation in incident radiation are expressed in terms of universal functions for the semi-infinite step case. Two-dimensional effects are most pronounced at large optical thicknesses and albedos.  相似文献   

4.
The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method.  相似文献   

5.
The topic of this work is the generalized X- and Y-functions of multidimensional radiative transfer. The physical problem considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, plane-parallel medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is used to derive coupled, integro-differential equations for the source functions at the boundaries of the medium. The resulting equations are said to be in double-integral form because the integration is over both angular variables. Numerical results are presented to illustrate the computational characteristics of the formulation.  相似文献   

6.
用基于Monte Carlo法的DRESOR法在平行平板系统内具有吸收、无发射介质中研究不同波形入射、壁面反射、介质散射率、光学厚度、各向异性散射等条件对瞬态辐射传递的影响.任意连续波形入射辐射是目前大多数数值方法很难处理的瞬态辐射问题,而DRESOR法通过在系统内计算一单位入射辐射能对介质的DRESOR数分布,就能计算任意连续波形入射辐射条件下高方向分辨率的瞬态辐射强度结果.DRESOR法和Monte Carlo法计算的结果进行了比较验证,两者吻合较好,证明了DRESOR法处理瞬态入射辐射问题的正确性和有效性.  相似文献   

7.
A new integral-vector Monte Carlo method (IVMCM) is developed to analyze the transfer of polarized radiation in 3D multiple scattering particle-laden media. The method is based on a “successive order of scattering series” expression of the integral formulation of the vector radiative transfer equation (VRTE) for application of efficient statistical tools to improve convergence of Monte Carlo calculations of integrals. After validation against reference results in plane-parallel layer backscattering configurations, the model is applied to a cubic container filled with uniformly distributed monodispersed particles and irradiated by a monochromatic narrow collimated beam. 2D lateral images of effective Mueller matrix elements are calculated in the case of spherical and fractal aggregate particles. Detailed analysis of multiple scattering regimes, which are very similar for unpolarized radiation transfer, allows identifying the sensitivity of polarization imaging to size and morphology.  相似文献   

8.
Three-dimensional radiative transfer in an anisotropic scattering medium exposed to spatially varying, collimated radiation is studied. The generalized reflection function for a semi-infinite medium with a very general scattering phase function is the focus of this investigation. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to formulate a nonlinear integral equation for the generalized reflection function. The integration is over both the polar and azimuthal angles; hence, the integral equation is said to be in the double-integral form. The double-integral, reflection function formulation can handle a variety of anisotropic phase functions and does not require an expansion of the phase function in a Legendre polynomial series. Complicated kernel transformations of previous single-integral studies are eliminated. Single and double scattering approximations are developed. Numerical results are presented for a Rayleigh phase function to illustrate the computational characteristics of the method and are compared to results obtained with the single-integral method. Agreement between the two approaches is excellent; however, as the transform variable increases beyond five the number of quadrature points required for the double-integral method to produce accurate solutions significantly increases. A new interpolation scheme produces accurate results when the transform variable is large.  相似文献   

9.
Large spatial frequency expansions for the source function, radiative flux, and intensity are obtained for an isotropically scattering finite two-dimensional medium exposed to collimated radiation. With these expansions, the single and double scattering results are obtained which are valid at small optical distances away from the incident radiation. Results are presented for a circular disk, exponential distribution and a Gaussian distribution of incident radiation.  相似文献   

10.
The focus of this study is the generalized reflection function of multidimensional radiative transfer. The physical situation considered is spatially varying, collimated radiation incident on the upper boundary of an isotropically scattering, semi-infinite medium. An integral transform is used to reduce the three-dimensional transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to formulate a nonlinear integral equation for the generalized reflection function. The resulting equation is said to be in double-integral form because the integration is over both angular variables. Computational issues associated with this generalized reflection function formulation are investigated. The source function and reflection function formulations are compared, and the relative merits of the two approaches are discussed.  相似文献   

11.
The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing–emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram–Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.  相似文献   

12.
Application of the discrete transfer method (DTM) has been extended to the analysis of radiative heat transfer in a variable refractive index participating medium. To validate the DTM formulation, radiative heat transfer in an absorbing, emitting and isotropically scattering planar medium was considered. The participating medium was assumed to be in radiative equilibrium. For both constant and variable refractive indices of the medium, the DTM results were compared with those available in the literature. The DTM was found to provide accurate results.  相似文献   

13.
An exact formulation is presented for a nongray two-dimensional, finite, planar, absorbing-emitting medium in radiative equilibrium. The absorption coefficient consists of an array of equal intensity, nonoverlapping bands or lines. Rectangular, triangular, exponential, Doppler and Lorentz shapes are specifically considered. Exact expressions are obtained for a medium subjected to collimated and diffuse radiation. The integral equations are linearized by the narrow-band approximation. The solution for the cosine-varying, collimated, monochromatic radiation model is used to construct the solutions for other boundary conditions. The two-dimensional equations are reduced to one-dimensional equations by the method of separation of variables. Results for the diffuse case are presented for several spatial variations.  相似文献   

14.
阐述了含吸收散射性介质三维空腔内辐射传递方程的离散坐标解法。讨论了入射散射项积分格式的选取,以及假散射和射线效应对解精度的影响。对三维矩形炉膛内辐射传递过程进行了数值模拟,并与区域法和离散传递法进行比较。比较结果表明离散坐标法具有较好的精度,是目前燃烧室内辐射传热过程数值模拟的一种较好的方法。  相似文献   

15.
A new method for the solution of the radiative transfer equation in spherical media based on a modified discrete ordinates method is extended to study radiative, conductive and convective heat transfer in a semi-transparent scattering porous medium. The set of differential equations is solved using the fourth-order Runge-Kutta method. Various results are obtained for the case of combined radiative and conductive heat transfer, as well as for the interaction of those modes with convection. The effects of some radiative properties of the medium on the heat transfer rate are examined.  相似文献   

16.
A numerical procedure for solving a singular Fredholm integral equation, which describes radiative transfer in an absorbing and isotropically scattering layer exposed to collimated radiation, is studied. The integral equation is solved by subtracting out the singularity and then approximating the integral term by a Gaussian quadrature. Bidirectional and hemispherical properties are found from the source function. Any arbitrary directional distribution of incident radiation can be handled by superimposing the collimated radiation case. In particular, the case of isotropic incident radiation is presented. The method gives accurate results, even for the extreme conditions of large optical thickness and large angle of incidence.  相似文献   

17.
冯玉霄  黄群星  梁军辉  王飞  严建华  池涌 《物理学报》2012,61(13):134702-134702
温度分布在线实时测量对于燃烧过程优化和污染物控制具有重要意义, 针对以往非接触三维温度分布重建过程的耗时性问题和忽略壁面辐射的不足, 本文提出了一种新的离散重建模型, 用于三维吸收、 发射和散射性高温燃烧介质以及壁面温度的快速联合非接触测量. 该模型以四个CCD(Charge Coupled Device) 为测量传感器, 通过构建辐射逆问题求解方程, 从CCD输出的辐射投影图像重建温度分布. 介质中不同投影方向内的辐射传递过程通过离散传递法来描述, 介质的散射和壁面反射则通过离散坐标法来近似. 离散后计算局部辐射强度的病态方程通过最小二乘余量法来求解, 论文对其计算速度进行了优化. 通过非对称温度分布测量算例分析了该模型的有效性, 讨论了测量噪音、 介质和壁面辐射特性对重建精度的影响, 并与其他方法对比分析了模型的重建速度. 计算结果表明本文提出的离散模型可以有效地用于大型高温燃烧介质和壁面温度分布的联合非接触测量. 即使在有噪声的情况下, 该模型也能获得准确的测量结果, 与其他计算方法相比, 采用改进的最小二乘余量法, 能有效地提高温度分布的重建计算速度.  相似文献   

18.
The problem of spatially varying, collimated radiation incident on an anisotropically scattering, plane-parallel medium is considered. A very general phase function is allowed. An integral transform is used to reduce the three-dimensional radiative transport equation to a one-dimensional form, and a modified Ambarzumian's method is applied to derive nonlinear integral and integro-differential equations for the generalized reflection and transmission functions. The integration is over the polar and azimuthal angles—this formulation is referred to as the double-integral formulation. The integral equations are used to illustrate symmetry relationships and to obtain single- and double-scattering approximations. The generalized reflection and transmission functions are important in the construction of the solutions to many multidimensional problems. Coupled integral equations for the interior and emergent intensities are developed and, for the case of two identical homogeneous layers, used to formulate a doubling procedure. Results for an isotropic and Rayleigh scattering medium are presented to illustrate the computational characteristics of the formulation.  相似文献   

19.
A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.  相似文献   

20.
This article numerically analyses the combined conductive and radiative heat transfer in an absorbing, emitting, and isotropically scattering medium. The non-Fourier heat conduction equation, which includes the time lag between heat flux and the temperature gradient, is used to model the conductive heat transfer in the medium. It predicts that a temperature disturbance will propagate as a wave at finite speed. The radiative heat transfer is solved using the P3 approximation method. In addition, the MacCormack's explicit predictor-corrector scheme is used to solve the non-Fourier problem. The effects of radiation including single scattering albedo, conduction-to-radiation parameter, and optical thickness of the medium on the transient and steady state temperature distributions are investigated in detail. Analysis results indicate that the internal radiation in the medium significantly influences the wave nature. The thermal wave nature in the combined non-Fourier heat conduction with radiation is more obvious for large values of conduction-to-radiation parameter, small values of optical thickness and higher scattering medium. The results from non-Fourier-effect equation are also compared to those obtained from the Fourier equation. Non-Fourier effect becomes insignificant as either time increases or the effect of radiation increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号