首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Magnetic properties of S=1/2 linear trimer cluster compounds A3Cu3(PO4)4 (A=Ca, Sr, and Pb) were investigated. Magnetic susceptibility data for the three compounds showed that paramagnetic copper spins form trimers with the total spin of 1/2 below about 45 K. Specific heat and magnetization measurements indicated that the trimer clusters undergo ferromagnetic long-range ordering at for A=Ca and antiferromagnetic long-range ordering at for A=Sr and for A=Pb. A3Cu3(PO4)4 exhibited 1/3-magnetization plateau at least up to magnetic field of 55 T at 1.3 and 4.2 K. A3Cu3(PO4)4 with A=Sr and Pb showed a spin-flop transition near 0.03 T in the antiferromagnetic state at 0.08 K. Specific heat data at magnetic fields clearly showed broad maxima at low temperatures due to the finite intra-chain interaction in one-dimensional arrays of the trimers.  相似文献   

3.
Two alkali metal uranates Rb2U2O7 and Rb8U9O31 have been synthesized by solid state reaction at high temperature and their crystal structures determined from single crystal X-ray diffraction data, collected with a three circles Brucker SMART diffractometer equipped by Mo(Kα) radiation and a charge-coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least-square method on the basis of F2 for all unique reflections, with R1=0.043 for 53 parameters and 746 independent reflections with I?2σ(I) for Rb2U2O7, monoclinic symmetry, space group P21/c, , , , β=108.81(1)°, , , Z=2 and R1=0.036 for 141 parameters and 2065 independent reflections with I?2σ(I) for Rb8U9O31, orthorhombic, space group Pbna, , , , , , Z=4.The Rb2U2O7 structure presents a strong analogy with that of K2U2O7 and can be described by layers of distorted UO2(O4) octahedra built from dimeric units of edge shared octahedra further linked together by opposite corners. In Rb8U9O31 puckered layers are formed by the association of two different uranium polyhedra, pentagonal bipyramids and distorted octahedra. The structure of Rb8U9O31 is built from a regular succession of infinite ribbons similar to those observed in diuranates M2U2O7 (MK, Rb) and infinite three polyhedra wide ribbons , to create an original undulated sheets .For both compounds Rb+ ions occupy the interlayer space and exhibit comparable mobility with conductivity measurements indicating an Arrhenius-type behavior.  相似文献   

4.
Single-phase 1:2 B-site ordered perovskites are formed in the (1−x)A2+(Li1/4Nb3/4)O3-(x)A2+(Li2/5W3/5)O3 systems, A2+=Sr and Ca, within the range 0.238?x?0.333. The X-ray and electron diffraction patterns are consistent with a P21/c monoclinic supercell, , , , β≈125°, where the 1:2 order is combined with bbc+ octahedral tilting. Rietveld refinements of the ordered A(BI1/3BII2/3)O3 structures give a good fit to a model with BI occupied by Li and Nb, BII by W and Nb, and a general stoichiometry (Sr,Ca)(Li3/4+y/2Nb1/4−y/2)1/3(Nb1−yWy)2/3O3, y=0.9x=0.21-0.30. The Sr system also includes regions of stability of a 1:3 ordered phase for 0.0?x?0.111, and a 1:1 ordered double perovskite for 0.833?x?1.0. The formation of the non-stoichiometric 1:2 ordered phases is associated with the large site charge/size differences that can be accessed in these systems, and restricted by local charge imbalances at the A-sites for W-rich compositions. These concepts are used to generate stability maps to rationalize the formation of the known 1:2 ordered oxide perovskites.  相似文献   

5.
The two non-isotypical rubidium rare-earth(III) thiophosphates Rb3M3[PS4]4 of praseodymium and erbium can easily be obtained by the stoichiometric reaction of the respective rare-earth metal, red phosphorus and sulfur with an excess of rubidium bromide (RbBr) as flux and rubidium source at 950°C for 14 days in evacuated silica tubes. The pale green platelet-shaped single crystals of Rb3Pr3[PS4]4 as well as the pink rods of Rb3Er3[PS4]4 are moisture sensitive. Rb3Pr3[PS4]4 crystallizes triclinically in the space group (, , , α=84.329(4)°, β=88.008(4)°, γ=80.704(4)°; Z=2), Rb3Er3[PS4]4 monoclinically in the space group P21/n (, , , β=95.601(6)°; Z=4). In both structures, there are three crystallographically different rare-earth cations present. (M1)3+ is eightfold coordinated in the shape of a square antiprism, (M2)3+ and (M3)3+ are both surrounded by eight sulfur atoms as bicapped trigonal prisms each with a coordination number of eight as well as for the praseodymium, but better described as CN=7+1 in the case of the erbium compound. These [MS8]13− polyhedra form a layer according to by sharing edges with the isolated [PS4]3− tetrahedra (d(P-S)=200-209 pm, ?(S-P-S)=102-116°). These layers are stacked with a repetition period of three in the case of the praseodymium compound, but of only two for the erbium analog. The rubidium cation (Rb1)+ is located in cavities of these layers and tenfold coordinated in the shape of a tetracapped trigonal antiprism. The also tenfold but more irregularly coordinated rubidium cations (Rb2)+ and (Rb3)+ reside between the layers.  相似文献   

6.
Attempts to prepare alkaline metal uranyl niobates of composition A1−xUNbO6−x/2 by high-temperature solid-state reactions of A2CO3, U3O8 and Nb2O5 led to pure compounds for x=0 and A=Li (1), Na (2), K (3), Cs (4) and for x=0.5 and A=Rb (5), Cs (6). Single crystals were grown for 1, 3, 4, 5, 6 and for the mixed Na0.92Cs0.08UNbO6 (7) compound. Crystallographic data: 1, monoclinic, P21/c, a=10.3091(11), b=6.4414(10), c=7.5602(5) Å, β=100.65(1), Z=4, R1=0.054 (wR2=0.107); 3, 5 and 7 orthorhombic, Pnma, Z=8, with a=10.307(2), 10.272(4) and 10.432(3) Å, b=7.588(1), 7.628(3) and 7.681(2) Å, c=13.403(2), 13.451(5) and 13.853(4) Å, R1=0.023, 0.046 and 0.036 (wR2=0.058, 0.0106 and 0.088) for 3, 5 and 7, respectively; 6, orthorhombic, Cmcm, Z=8, and a=13.952(3), b=10.607(2) Å, c=7.748(2) Å, R1=0.044 (wR2=0.117).The crystal structure of 1 is characterized by layers of uranophane sheet anion topology parallel to the (100) plane. These layers are formed by the association by edge-sharing of chains of edge-shared UO7 pentagonal bipyramids and chains of corner-shared NbO5 square pyramids alternating along the [010] direction. The Li+ ions are located between two consecutive layers and hold them together; the Li+ ions and two layers constitute a neutral “sandwich” {(UNbO6)-(Li)22+-(UNbO6)}. In this unusual structure, the neutral sandwiches are stacked one above another with no formal chemical bonds between the neutral sandwiches.The homeotypic compounds 3, 5, 6, 7 have open-framework structures built from the association by edge-sharing in two directions of parallel chains of edge-shared UO7 pentagonal bipyramids and ribbons of two edge-shared NbO6 octahedra further linked by corners. In 3, 5 and 7, the mono-dimensional large tunnels created in the [001] direction by this arrangement can be considered as the association by rectangular faces of two columns of triangular face-shared trigonal prisms of uranyl oxygens. In 3 and 7, all the trigonal prisms are occupied by the alkaline metal, in 5, they are half-occupied. In 6, the polyhedral arrangement is more symmetric and the tunnels created in the [010] direction are built of face-sharing cubes of uranyl oxygens totally occupied by the Cs atoms. This last compound well illustrates the structure-directing effect of the conterion.  相似文献   

7.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

8.
Two new open-framework zinc phosphites, [M(C6N4H18)][Zn3(HPO3)4] (M=Ni, Co), have been prepared under hydrothermal conditions. Single-crystal X-ray diffraction analysis shows that [Ni(C6N4H18)][Zn3(HPO3)4] (1) and [Co(C6N4H18)][Zn3(HPO3)4] (2) are isostructural and both crystallize in the monoclinic space group C2/c with , , , β=109.83(3)°, Z=4, R1=0.0408 (I>2σ(I)), and wR2=0.1104 (all data) for 1, and , , , β=109.328(2)°, Z=4, R1=0.0380 (I>2σ(I)), and wR2=0.1093 (all data) for 2. The structures of 1 and 2 are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo-pyramids linked through oxygen vertices to form the three-dimensional (3-D) open-frameworks with multi-directional intersecting 12-membered ring (12-MR) channels. The M(TETA) (M=Ni, Co) complexes self-assembled under hydrothermal system connect with the inorganic host via M-O-P linkages and interact with inorganic framework through weak H-bonds. The two compounds show intense photoluminescence upon photoexcitation at 235 nm.  相似文献   

9.
The single crystals of lanthanum metaphosphate MLa(PO3)4 (M=Na, Ag) have been synthesized and studied by a combination of X-ray crystal diffraction and vibrational spectroscopy. The sodium and silver compounds crystallize in the same monoclinic P21/n space group ( factor group) with the following respective unit cell dimensions: a=7.255(2), b=13.186(3), , β=90.40(2)°, , Z=4 and a=7.300(5), b=13.211(9), , β=90.47(4)°, , Z=4. This three-dimensional framework is built of twisted zig-zag chains running along a direction and made up of PO4 tetrahedra sharing two corners, connected to the LaO8 and NaO7 or AgO7 polyhedra by common oxygen atoms to the chains. The infrared and Raman vibrational spectra have been investigated. A group factor analysis leads to the determination of internal modes of (PO3) anion in the phosphate chain.  相似文献   

10.
The uranyl vanadates A2(UO2)3(VO4)2O (A=Li, Na) have been synthesized by solid-state reaction and the structure of the Li compound was solved from single-crystal X-ray diffraction. The crystal structure is built from chains of edge-shared U(2)O7 pentagonal bipyramids alternatively parallel to - and -axis and further connected together to form a three-dimensional (3-D) arrangement. The perpendicular chains are hung on both sides of a sheet parallel to (001), formed by U(1)O6 square bipyramids connected by VO4 tetrahedra, and derived from the autunite-type sheet. The resulting 3-D framework creates non-intersecting channels running down the - and -axis formed by empty face-shared oxygen octahedra, the Li+ ions are displaced from the center of the channels and occupy the middle of one edge of the common face. The peculiar position of the Li+ ion together with the full occupancy explain the low conductivity of Li2(UO2)3(VO4)2O compared with that of Na(UO2)4(VO4)3 containing the same type of channels half occupied by Na+ ions in the octahedral sites.Crystallographic data for Li2(UO2)3(VO4)2O: tetragonal, space group I41/amd, , , , Z=4, ρmes=5.32(2) g/cm3, ρcal=5.36(3) g/cm3, full-matrix least-squares refinement basis on F2 yielded, R1=0.032, wR2=0.085 for 37 refined parameters with 364 independent reflections with I?2σ(I).  相似文献   

11.
Three new rare earth metal-rich compounds, Gd4NiTe2, and Er5M2Te2 (M=Ni, Co), were synthesized in direct reactions using R, R3M, and R2Te3 (R=Gd, Er; M=Co, Ni) and single-crystal structures were determined. Gd4NiTe2 is orthorhombic and crystallizes in space group Pnma with four formula units per cell. Lattice parameters at 110(2) K are a=15.548(9), b=4.113(2), . Er5Ni2Te2 and Er5Co2Te2 are isostructural and crystallize in the orthorhombic space group Cmcm with two formula units per cell. Lattice parameters at 110(2) K are a=3.934(1), b=14.811(4), , and a=3.898(1), b=14.920(3), , respectively. Metal-metal bonding correlations were analyzed using the empirical Pauling bond order concept.  相似文献   

12.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

13.
Two new aluminotriphosphates, RbAl3(P3O10)2 and CsAl3(P3O10)2, were synthesized by solid-state reaction. They crystallize in non-centrosymmetric space groups: C2221 with , , , (Z=4) for RbAl3(P3O10)2 and C2ce with , , , (Z=4) for CsAl3(P3O10)2. Their 3D frameworks, built up of corner sharing P3O10 groups, AlO4 tetrahedra and AlO6 octahedra, exhibit several remarkable features. The AlO4 tetrahedra and P3O10 groups are directly associated through the corners, forming helical columns in the Rb-phase and “helicoid” layers in the Cs-phase. The simultaneous presence of AlO4 and AlO6 species, rather rare in phosphates, leads to the formation of closely related [Al3P6O24] layers in both structures, which differ by their stacking mode. The presence of intersecting tunnels running along 〈110〉 and [001] directions, with Rb+ and Cs+ sitting at the intersections, shows the opened character of these two structures.  相似文献   

14.
15.
The compound CsAgSb4S7 has been synthesized by the reaction of the elements in a Cs2S3 flux at 773 K. The compound crystallizes in a new structure type with eight formula units in space group C2/c of the monoclinic system in a cell at 153 K of dimensions , , , β=97.650(1)°, and . The structure contains two-dimensional layers separated by Cs atoms. Each layer is built from edge-sharing one-dimensional and chains. Each Ag atom is tetrahedrally coordinated to four S atoms. Each Sb3+ center is pyramidally coordinated to three S atoms to form an SbS3 group. CsAgSb4S7 is insulating with an optical band gap of 2.04 eV. Extended Hückel calculations indicate that the band gap in CsAgSb4S7 is dominated by the Sb 5s and S 3p states above and below the Fermi level.  相似文献   

16.
The pyrochlores in the series A2Sb2O7 have been synthesized and characterized as exhibiting spin glass transitions at TSG=41, 4.5, and 2.6 K (for A=Mn2+, Co2+ and Ni2+S=1, respectively) despite the lack of chemical disorder. Since the Curie-Weiss temperature remains essentially constant for all members in the series (), the frustration index for these materials increases significantly as the moment size is reduced from f=|θ|/TSG=1.1 (Mn2+), to 9.3 (Co2+) to 14.6 (Ni2+). There is also a corresponding change in the spin dynamics measured by the shift in the AC susceptibility signal as a function of frequency. These new materials provide an avenue to investigate the effect of quantum fluctuations on the Heisenberg pyrochlore lattice in the low spin limit, and show there is a dramatic change in the spin dynamics as the quantum regime is approached.  相似文献   

17.
The crystal structures of the two oxides Bi46M8O89 (M=P, V) have been solved from single crystals X-ray data at room temperature. Bi46P8O89 crystallizes in the monoclinic symmetry (space group C2/m) with the cell parameters , , and β=112.14(3)°. The symmetry of Bi46V8O89 is also monoclinic but the space group is P21/c with the unit-cell parameters: , , and β=107.27(3)°. Both structures derive from an oxygen deficient fluorite-type structure where the Bi and M cations (M=P, V) are ordered in the framework. The structures are characterised by isolated MO4 tetrahedra (M=P, V) which contradicts the previous results. The difference between the two structures is only due to a different order of the M atoms (M=P, V) in the fluorite-type superstructure. It will be shown that some oxygen sites are partially occupied in both structures which can explain the ion conduction properties of these phases. A structural building principle will be proposed that can explain the large domain of solid solution related to the fluorite-type observed in both systems.  相似文献   

18.
The family of hydroxymonophosphates of generic formula AMIII(PO3(OH))2 has been revisited using hydrothermal techniques. Four new phases have been synthesized: CsIn(PO3(OH))2, RbFe(PO3(OH))2, RbGa(PO3(OH))2 and RbAl(PO3(OH))2. Single crystal diffraction studies show that they exhibit two different structural types from previously observed other phases with A=H3O, NH4, Rb and M=Al, V, Fe. The “Cs-In” and “Rb-Fe” phosphates crystallize in the triclinic space group , with the cell parameters a=7.4146(3) Å, b=9.0915(3) Å, c=9.7849(3) Å, α=65.525(3)°, β=70.201(3)°, γ=69.556(3)° and V=547.77(4) Å3 (Z=3) for CsIn(PO3(OH))2 and a=7.2025(4) Å, b=8.8329(8) Å, c=9.4540(8) Å, α=65.149(8)°, β=70.045(6)°, γ=69.591(6)° and V=497.44(8) Å3 (Z=3) for α-RbFe(PO3(OH))2. The “Rb-Al” and “Rb-Ga” phosphates crystallize in the Rc space group, with a=8.0581(18) Å and c=51.081(12) Å (V=2872.5(11) Å3 and Z=18) for RbAl(PO3(OH))2 and a=8.1188(15) Å and c=51.943(4) Å (V=2965(8) Å and Z=18) for RbGa(PO3(OH))2. These two structural types are closely related. Both are built up from MIIIO6 octahedra sharing their apices with PO3(OH) tetrahedra to form [M3(PO3OH)6] units, but the latter exhibits a different configuration of their tetrahedra. The three-dimensional host-lattices result from the connection of the [M3(PO3OH)6] units and they present numerous intersecting tunnels containing the monovalent cations.  相似文献   

19.
Crystal structures and magnetic properties of quaternary oxides Ba3MIr2O9 (M=Mg, Ca, Sc, Ti, Zn, Sr, Zr, Cd and In) were investigated. Rietveld analyses of their X-ray diffraction data indicate that they adopt the 6H-perovskite-type structure with space group P63/mmc or, in the case of M=Ca, Sr and Cd, a monoclinically distorted structure with space group C2/c. The Ir valence configurations are (M=Mg, Ca, Zn, Sr and Cd), (M=Sc and In) and (M=Ti and Zr). Magnetic susceptibility and specific heat measurements were carried out. In the , the Ir5+ ions have a non-magnetic ground state and the magnetic behavior for these compounds is explained by the Kotani's theory. For , the effective magnetic moment of these compounds is significantly small, although the Ir4+ ions have magnetic moment, which indicates the existence of the strong antiferromagnetic interaction between Ir4+ ions in the Ir4+2O9 face-shared bioctahedra. In the case of , a specific heat anomaly was found at about 10 K (M=Sc) and 1.6 K (M=In), which suggests the magnetic ordering of the magnetic moments of Ir4+ in the (Ir4+Ir5+)O9 bioctahedra.  相似文献   

20.
The disordered structures and low temperature dielectric relaxation properties of Bi1.667Mg0.70Nb1.52O7 (BMN) and Bi1.67Ni0.75Nb1.50O7 (BNN) misplaced-displacive cubic pyrochlores found in the Bi2O3-MIIO-Nb2O5 (M=Mg, Ni) systems are reported. As for other recently reported Bi-pyrochlores, the metal ion vacancies are found to be confined to the pyrochlore A site. The B2O6 octahedral sub-structure is found to be fully occupied and well-ordered. Considerable displacive disorder, however, is found associated with the O′A2 tetrahedral sub-structure in both cases. The A-site ions were displaced from Wyckoff position 16d (, , ) to 96 h (, , ) while the O′ oxygen was shifted from position 8b (, , ) to Wyckoff position 32e (, , ). The refined displacement magnitudes off the 16d and 8b sites for the A and O′ sites were 0.408 Å/0.423 Å and 0.350 Å/0.369 Å for BMN/BNN, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号