首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cubic ZrW2−xMoxO8 (c-ZrW2−xMoxO8) (x=0-1.3) solid solutions were prepared by a novel polymorphous precursor transition route. X-ray diffraction (XRD) analysis reveals that the solid solutions are single phase with α- and β-ZrW2O8 structure for 0?x?0.8 and 0.9?x?1.3, respectively. The optimum synthesis conditions of ZrWMoO8 are obtained from differential scanning calorimetry-thermal gravimetric analysis (DSC-TGA), XRD and mass loss-temperature/time curves. Following the above experience, the stoichiometric solid solutions of c-ZrW2−xMoxO8 (x=0-1) are obtained within 1 wt% of mass loss. The relationships of lattice parameters (a), phase transition temperatures (Tc) and instantaneous coefficients of thermal expansion (αi) against the content x of Mo are discussed based on the variation of order degree parameters of ZrW2−xMoxO8.  相似文献   

2.
LaFe1−xNixO3−δ (x=0.1−1.0) perovskites were synthesized via citrate route. The p(O2)-stability of the perovskite phases LaFe1−xNixO3−δ has been evaluated at 1100 °C based on the results of XRD analysis of powder samples annealed at various p(O2) and quenched to room temperature. The isothermal LaFeO3−δ-“LaNiO3−δ” cross-section of the phase diagram of the La-Fe-Ni-O system has been proposed in the range of oxygen partial pressure −15<log p(O2)/atm≤0.68. The unit cell parameters of orthorhombic perovskites O-LaFe1−xNixO3−δ increase with decrease in p(O2) at fixed composition x. This behavior is explained on the basis of size factor. The decomposition temperatures of rhombohedral phases R-LaFe1−xNixO3−δ for x=0.7, 0.8, 0.9 and 1.0 in air were determined as 1137, 1086, 1060 and 995 °C, respectively.  相似文献   

3.
Lithium substituted Li1+xMn2−xO4 spinel samples in the entire solid solution range (0?x?1/3) were synthesized by solid-state reaction. The samples with x<0.25 are stoichiometric and those with x?0.25 are oxygen deficient. High-temperature oxide melt solution calorimetry in molten 3Na2O·4MoO3 at 974 K was performed to determine their enthalpies of formation from constituent binary oxides at 298 K. The cubic lattice parameter was determined from least-squares fitting of powder XRD data. The variations of the enthalpy of formation from oxides and the lattice parameter with x follow similar trends. The enthalpy of formation from oxides becomes more exothermic with x for stoichiometric compounds (x<0.25) and deviates endothermically from this trend for oxygen-deficient samples (x?0.25). This energetic trend is related to two competing substitution mechanisms of lithium for manganese (oxidation of Mn3+ to Mn4+ versus formation of oxygen vacancies). For stoichiometric spinels, the oxidation of Mn3+ to Mn4+ is dominant, whereas for oxygen-deficient compounds both mechanisms are operative. The endothermic deviation is ascribed to the large endothermic enthalpy of reduction.  相似文献   

4.
Zr1−xLnxW2O8−x/2 solid solutions (Ln=Eu, Er, Yb) of different substitution fractions x have been synthesized. Their X-ray diffraction (XRD) patterns have been indexed and lattice parameters calculated based on the α-ZrW2O8 structure. The coefficients of thermal expansion (CTEs) of these solid solutions were estimated to be −10.3×10−6 K−1 in temperature range of 30-100 °C. The solubility of lanthanide ions in these solid solutions decreases linearly with the increase in the radius of substituted lanthanide ions. Based on the concentration dependence of phase transition temperatures, a novel method for determination of solubility of the lanthanide ions in Zr1−xLnxW2O8−x/2 solid solutions has been developed. This method seems to be more sensitive as compared with that based on XRD technique.  相似文献   

5.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

6.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

7.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

8.
This paper describes the results of electron microscopy, high-temperature powder neutron diffraction, and impedance spectroscopy studies of brownmillerite-structured Ba2In2O5 and perovskite structured Ba(InxZr1−x)O3−x/2. The ambient temperature structure of Ba2In2O5 is found to adopt Icmm symmetry, with disorder of the tetrahedrally coordinated (In3+) ions of the type observed previously in Sr2Fe2O5. Ba2In2O5 undergoes a ∼6-fold increase in its ionic conductivity over the narrow temperature range from ∼1140 K to ∼1230 K, in broad agreement with previous studies. This transition corresponds to a change from the brownmillerite structure to a cubic perovskite arrangement with disordered anions. Electron microscopy investigations showed the presence of extended defects in all the crystals analyzed. Ba(InxZr1−x)O3−x/2 samples with x=0.1 to 0.9 adopt the cubic perovskite structure, with the lattice parameter increasing with x.  相似文献   

9.
Orthorhombic lithium zinc molybdate was first chosen and explored as a candidate for double beta decay experiments with 100Mo. The phase equilibria in the system Li2MoO4-ZnMoO4 were reinvestigated, the intermediate compound Li2Zn2(MoO4)3 of the α-Cu3Fe4(VO4)6 (lyonsite) type was found to be nonstoichiometric: Li2−2xZn2+x(MoO4)3 (0≤x≤0.28) at 600 °C. The eutectic point corresponds to 650 °C and 23 mol% ZnMoO4, the peritectic point is at 885 °C and 67 mol% ZnMoO4. Single crystals of the compound were prepared by spontaneous crystallization from the melts and fluxes. In the structures of four Li2−2xZn2+x(MoO4)3 crystals (x=0; 0.03; 0.21; 0.23), the cationic sites in the face-shared octahedral columns were found to be partially filled and responsible for the compound nonstoichiometry. It was first showed that with increasing the x value and the number of vacancies in M3 site, the average M3-O distance grows and the lithium content in this site decreases almost linearly. Using the low-thermal-gradient Czochralski technique, optically homogeneous large crystals of lithium zinc molybdate were grown and their optical, luminescent and scintillating properties were explored.  相似文献   

10.
Polycrystalline samples with general formula Yb2−xCrxO3 (0<x<0.03), obtained by sol-gel method and analyzed by X-ray diffraction, formed solid solutions over all the mentioned range. Cr showed a maximum solubility of 2.8 mol% in Yb2O3 sesquioxide at 1000 °C. A preferential substitution of Cr3+ ions over two cationic sites, 8b and 24d in the space group Ia-3 was found. The lattice parameters a are found to vary linearly (10.4402(4) Å <a<10.4372(1) Å) with the composition x. The two independent atoms Yb/Cr have octahedral coordination; however, the degrees of distortion of their coordination polyhedron are different. Replacing Yb3+ by Cr3+ introduces slight changes in the atomic coordinates leading to an increase of the mean cation-anion distances. The ability of Raman spectroscopy to detect changes in local coordination is utilized. A pseudo-tetrahedral coordination for the Cr3+ in the 24d site was found. Magnetic susceptibility measurements of all samples were done in a temperature range of 2-50 K. For T<37 K, the inverse paramagnetic susceptibilities depend linearly on temperature. However, in the high-temperature region, for T>37 K, the inverse paramagnetic susceptibilities are non-linear versus temperature. This deviation from the Curie-Weiss behaviour was discussed.  相似文献   

11.
Cathode materials Li[CoxMn1−x]O2 for lithium secondary batteries have been prepared by a new route—precursor method of layered double hydroxides (LDHs). In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with mass spectrometry (TG-MS) were used to monitor the structural transformation during the reaction of CoMn LDHs and LiOH·H2O: firstly the layered structure of LDHs transformed to an intermediate phase with spinel structure; then the distortion of the structure occurred with the intercalation of Li+ into the lattice, resulting in the formation of layered Li[CoxMn1−x]O2 with α-NaFeO2 structure. Extended X-ray absorption fine structure (EXAFS) data showed that the Co-O bonding length and the coordination number of Co were close to those of Mn in Li[CoxMn1−x]O2, which indicates that the local environments of the transitional metals are rather similar. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation state of Co and Mn. The influences of Co/Mn ratio on both the structure and electrochemical property of Li[CoxMn1−x]O2 have been investigated by XRD and electrochemical tests. It has been found that the products synthesized by the precursor method demonstrated a rather stable cycling behavior, with a reversible capacity of 122.5 mAh g−1 for the layered material Li[Co0.80Mn0.20]O2.  相似文献   

12.
The chemical stability of perovskite-type La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3) in high oxygen partial pressure, PO2, was investigated with three methods: thermogravimetry, XRD analysis, and thermodynamic calculation. The second phase, CaCrO4 was observed by XRD analysis on the powder equilibrated in high PO2. Thermogravimetry under fixed temperatures sensitively detected the segregation of the second phase in the form of oxygen incorporation, because oxidation of chromium ion accompanies the segregation. The second phase tended to appear in high PO2 and at low temperature. The single-phase regions of La1−xCaxCrO3−δ obtained from the two experimental methods well agreed with each other. The results of thermodynamic calculation on the assumption of ideality of the solid solution also agreed with the experimental results. These results suggested the sufficient chemical stability of La1−xCaxCrO3−δ in high PO2 concerning the application to an interconnector of high-temperature solid oxide fuel cells; for example, La0.7Ca0.3CrO3−δ is stable at 1273 K in air.  相似文献   

13.
Powder neutron and X-ray diffraction studies show that the double perovskites in the region 0?x?1 exhibit two crystallographic modifications at room temperature: monoclinic P21/n and tetragonal I4/m, with a boundary at 0.75<x<0.9. Magnetic susceptibility measurements indicate that for x=0 and 0.5 Sr2−xLaxMnWO6 orders antiferromagnetically (AFM) at 15 and 25 K, respectively, for 0.75?x<1.0, a contribution of weak ferromagnetism (FM), probably due to canted-AFM order, increases with increasing x. The end point compound SrLaMnWO6 shows the strongest FM cluster effect; however, no clear evidence of magnetic order is discernable down to 4.2 K. X-ray absorption spectroscopy (XAS) confirms Mn2+ and mixed-valent W6+/5+ formal oxidation states in Sr2−xLaxMnWO6.  相似文献   

14.
The complex phase relationships near the BaO-poor region of the quaternary Ba-Sm-Y-Cu-O oxide system prepared in pure air (O2p=22 kPa, 950 °C) and in 0.1% O2 (O2p=100 Pa, 810 °C) have been determined. This investigation also included the subsolidus compatibilities in ten subsystems (Ba-Sm-Y-O, Ba-Sm-Cu-O, Ba-Y-Cu-O, Sm-Y-Cu-O, Ba-Sm-O, Ba-Y-O, Ba-Cu-O, Sm-Y-O, Sm-Cu-O, and Y-Cu-O), and the homogeneity range of five solid solutions (Ba(SmxY2−x)CuO5, (Sm,Y)2O3, (Sm,Y)2CuO4, (Y,Sm)2Cu2O5, and Ba(Sm,Y)2O4). The single phase range of the superconductor solid solution, (Ba2−xSmx)(Sm1−yYy)Cu3O6+z, and the phase compatibilities in its vicinity, which are particularly important for processing, are described in detail. The phase equilibrium data of the Ba-Sm-Y-Cu-O system will enable the improvement of the intrinsic superconducting properties of second-generation wires, and facilitate the flux-pinning process.  相似文献   

15.
The complex oxide Na3Fe2Mo5O16 has been synthesized, and its crystal structure was determined by single-crystal X-ray diffraction (space group (SG) P-3m1; a=5.7366(6) Å, c=22.038(3) Å; Z=2). The compound can be considered as a new structure type containing Mo3O13 cluster units, which can be derived from the Na2In2Mo5O16 structure model by doubling of the cell along the c-axis. Na3Fe2Mo5O16 crystallizes in centrosymmetric SG (P-3m1) and the positions of the sodium atoms are fully occupied in contrast to the proposed Na2In2Mo5O16 model SG (P3m1). Magnetic properties of Na3Fe2Mo5O16 were studied by superconducting quantum interference device measurements, revealing antiferromagnetic ordering below max=10(1) K. Thermal stability in air was investigated by in situ high-temperature X-ray powder diffraction. Structural relationships to Na2In2Mo5O16 and NaFe(MoO4)2 are discussed.  相似文献   

16.
The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr6O11 and MoO2 in air. In the literature, an oxide with a composition Pr2MoO6 has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm4Mo3O16 (space group Pn-3n, Z=8), with a=11.0897(1) Å. The structure contains MoO4 tetrahedral units, with Mo-O distances of 1.788(2) Å, fully long-range ordered with PrO8 polyhedra; in fact it can be considered as a superstructure of fluorite (M8O16), containing 32 MO2 fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (af=5.5 Å) as a≈2af. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr3+-Pr4+ oxidation state. The similarity of the XRD pattern with that published for Ce2MoO6 suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce5Mo3O16.  相似文献   

17.
A reagentless signal-on electrochemiluminescence (ECL) biosensor for DNA hybridization detection was developed based on the quenching effect of ferrocene (Fc) on intrinsic cathodic ECL at thin oxide covered glassy carbon (C/CxO1−x) electrodes. To construct the DNA biosensor, molecular beacon (MB) modified with ferrocene (3′-Fc) was attached to a C/CxO1−x electrode via the covalent bound between labeled amino (5′-NH2) and surface functional groups. It was found that the immobilization of the probe on the electrode surface mainly depended on the fraction of surface carbonyl moiety. When a complementary target DNA (cDNA) was present, the stem-loop of MB on the electrode was converted into a linear double-helix configuration due to hybridization, resulting in the moving away of Fc from the electrode surface, and the restoring of the cathodic ECL signal. The restoration of the ECL intensity was linearly changed with the logarithm of cDNA concentration in the range of 1.0 × 10−11 to 7.0 × 10−8 M, and the detection limit was ca. 5.0 pM (S/N = 3). Additionally, single-base mismatched DNA can be effectively discriminated from the cDNA. The great advantage of the biosensor lies in its simplicity and cost-effective with ECL generated from the electrode itself, and no adscititious luminophore is required.  相似文献   

18.
A series of lithium europium double tungsto-molybdate phosphors LiEu(WO4)2−x(MoO4)x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) have been synthesized by solid-state reactions and their crystal structure, optical and luminescent properties were studied. As the molybdate content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm was found to increase and reach a maximum when the relative ratio of Mo/W is 2:0. These changes were found to be accompanied with the changes in the spectral feature, which can be attributed to the crystal field splitting of the 5D07F2 transition. As the molybdate content increases the emission intensity of the 615 nm peak also increases. The intense red-emission of the tungstomolybdate phosphors under near-UV excitation suggests them to be potential candidate for white light generation by using near-UV LEDs. In this study the effect of chemical compositions and crystal structure on the photoluminescent properties of LiEu(WO4)2−x(MoO4)x is investigated and discussed.  相似文献   

19.
A systematic study of the chemical interaction of Ba2YCu3O6+y and Gd3NbO7 was conducted under two processing conditions: purified air (21% po2), and 100 Pa po2 (0.1% po2). Phases present along the pseudo-binary join Ba2YCu3O6z and Gd3NbO7 were found to be in two five-phase volumes within the system. Three common phases that are present in all samples are (Y,Gd)2Cu2O5, Ba(Y,Gd)2CuO5 and Cu2O or CuO (depending on the processing conditions). The assemblies of phases can be categorized in three regions, with Ba2YCu3O6+y: Gd3NbO7 ratios of (I)<5.5:4.5; (II)=5.5:4.5; and (III)>5.5:4.5. The lowest melting temperature of the system was determined to be ≈938 °C in air, and 850 °C at 100 Pa po2. Structure determinations of two selected phases, Ba2(GdxY1−x)NbO6 (Fmm, No. 225), and (GdxY3−x)NbO7 (C2221, No. 20 and Ccmm, No. 63), were completed using the X-ray Rietveld refinement technique. Reference X-ray powder diffraction patterns for selected phases of Ba2(GdxY1−x)NbO6 (x=0.2, 0.4, 0.6, and 0.8) and (GdxY3−x)NbO7 (x=0.6, 1.2, 1.8, 2.4 and 3) have been prepared for inclusion in the Powder Diffraction File (PDF).  相似文献   

20.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号