首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Time-resolved spectroscopic measurements of the radiation emitted from Al, Ti, and Mo X pinches have been made with time resolution. The radiation is emitted from micropinch plasmas with sizes of order in times in the 10- range. Spectra implied that dense, plasmas were produced, such as a lifetime, 1.5- electron temperature and near solid-density Ti plasma. The experimental systems and analysis methods are described in detail, including line ratio calculations for μm-scale Ti and Al plasmas with ion densities of 1019-1024 cm−3 and electron temperatures.  相似文献   

3.
We report the theoretical results on use of neon as a tracer element to measure the multi-megagauss magnetic field, which is induced in the ultrahigh intense laser-matter interactions. The shape of Zeeman splitting of spectral line for transition of He-like neon are calculated for high-intensity laser produced quasi one-components plasma with the consideration of the electron collision broadening, electron collision shift and magnetic field splitting. The results show that all of the Zeeman splitting spectrum can be identified under Rayleigh criterion for the plasma with the electron temperature from 10 to , the magnetic field from 106 to and the electron density . With both the electron temperature and magnetic field increasing, the requirement for the resolution power of the spectrometer decreases. If a spectrometer with the resolution power of 1/1000 is used, the measurement of the quasistatic magnetic field by Zeeman splitting of spectral lines is applicable when quasistatic magnetic field is larger than some tens of megaGauss.  相似文献   

4.
5.
6.
7.
Measurements of near-infrared water vapour continuum using continuous wave cavity ring down spectroscopy (cw-CRDS) have been performed at around 10611.6 and . The continuum absorption coefficients for N2-broadening have been determined to be and at , and and at , respectively.These results represent the first near-IR continuum laboratory data determined within the complex spectral environment in the 940 nm water vapour band and are in reasonable agreement with simulations using the semiempirical CKD formulation.  相似文献   

8.
9.
10.
11.
The , , and band spectra of HCSi radical were investigated by means of near-infrared diode laser spectroscopy to determine precise molecular constants for the and states. The detailed analysis of the rotationally resolved band spectra, studied for the first time in the present investigation, leads to the precise determination of molecular constants for the state associated with the Renner-Teller interaction. We obtained −0.15126663(53) and 495.00698(30) cm−1 as the Renner-Teller parameter ε and the bending vibrational frequency ω2, respectively. Based on the molecular constants for the and states, the rotational levels of the state were analyzed to obtain molecular constants and information on upper state perturbations. Using the available spectroscopic data, valence force fields for both the and states were estimated to aid in understanding the vibrational energy levels of the HCSi radical.  相似文献   

12.
The emission spectrum of VCl has been investigated at high resolution in the 3000-19 400 cm−1 region using a Fourier transform spectrometer. The bands were excited in a high temperature carbon tube furnace by the reaction of vanadium metal vapor and a trace of BCl3 as well as in a microwave discharge lamp by the reaction of VOCl3 vapor with active nitrogen. The spectra were recorded using the Fourier transform spectrometer associated with the McMath-Pierce telescope of the National Solar Observatory at Kitt Peak. The analysis of the system of VCl (previously labeled as ) has been extended by analyzing the rotational structure of some additional bands. A rotational analysis of the , , and subbands of the 0-2, 0-1, 0-0, and 1-0 bands, and the subband of the 0-1 and 0-0 bands has been obtained and molecular constants have been extracted. The subband was not identified in any of the assigned bands. The spectroscopic properties of the low-lying electronic states of VCl have been predicted by CASSCF/CMRCI ab initio calculations and the experimental assignments are supported by the ab initio results.  相似文献   

13.
14.
Using multireference configuration-interaction methods and double to triple-zeta basis sets with semidiffuse and polarization functions, potential energies and spectroscopic constants for low-lying doublet, and quartet states of AlN were calculated. has Re=3.280 bohr and . lies 0.17 eV above the ground state. Using an estimated electron affinity of 2.1 eV for AlN, four states of AlN are found to be stable, namely , , , and . Comparisons with the isovalent anions BN (three stable states) and AlP (seven stable states) are made. Photo-detachment of an electron from the state of AlN can lead to an accurate determination of the energy difference between the two close-lying lowest states of AlN, and , predicted here to be 0.09 eV apart.  相似文献   

15.
We present a comparison of the photoionization cross sections of the 4d excited levels of sodium by using the two-step resonant laser excitation and by two-photon non-resonant excitation from the ground state. Dye lasers, pumped with a Nd: YAG laser, have been used in conjunction with a thermionic diode ion detector to measure cross sections and the atomic densities as a function of laser energy. By applying the saturation technique, the measured values of the cross sections and atomic densities for the 4d level by two-photon excitation are 12.2(2.4) Mb and , respectively. Where as in the case of two-step excitation, the cross section and number density for the 4d level via 3p level and for the 4d levels via 3p level are determined as 9.6(1.9) Mb, and 12.8(2.5) Mb, , respectively.  相似文献   

16.
The rotational spectrum of the iron monosulfide radical, FeS, was measured in the frequency region of 220-390 GHz with a source-modulated millimeter/submillimeter-wave spectrometer. The radical was efficiently produced in a free space absorption cell by a dc discharge in a mixture of Ar and H2S with a stainless-steel hollow cathode. Several series of paramagnetic lines were detected with intervals of about 12 GHz. The four series having relatively strong intensity were assigned to FeS in the vibrationally ground state of the X5Δi electronic state, two series to that in the vibrationally excited state, and five series presumably to FeS in the electronically excited state, . The effective molecular constants were determined for FeS in the X5Δi electronic state. The components of the vibrationally ground state showed an apparent shift from the typical pattern of the state. In addition, the fine structure of the state was found to be far from a regular pattern expected for a state. A trial analysis including electronic interaction between the and states was carried out, but it was not possible to explain the spectral lines of both electronic states simultaneously. Reasons for the heavily perturbed spectral patterns are discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号