首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the first three members (s=1, 2, 3) of the Co-12s2 homologous series of multi-layered copper oxides are gradually doped with holes through high-pressure oxygenation (HPO). The phases differ from each other only by thickness of the fluorite-structured layer block, (Ce,Y,Ca)-[O2-(Ce,Y)]s−1, between two identical CuO2 planes. High-resolution transmission-electron microscopy (HRTEM) and electron diffraction (ED) analyses together with both synchrotron X-ray and neutron powder diffraction data, reveal that as a consequence of HPO the charge-reservoir CoO4-tetrahedra chains get broken and the lattice symmetry of the Co-12s2 phases changes from orthorhombic to tetragonal. Oxygen contents are analyzed for the samples with wet-chemical and thermogravimetric techniques. The valence state of copper in the CuO2 plane is determined from Cu L-edge X-ray absorption near-edge structure (XANES) spectra to be compared with the values estimated through bond-valence-sum (BVS) calculations from the crystal structure data. The positive charge induced by oxygen loading (or aliovalent CaII-for-YIII substitution in CoSr2YCu2O7+δ) is found not to be completely accommodated in the CuO2 planes but be rather effectively trapped at the charge-reservoir Co atoms. Superconductivity appears in the Co-1212 (CoSr2YCu2O7+δ) samples with the copper valence of 2.13 or higher, whereas in the Co-1222 (CoSr2(Ce0.25Y0.75)2Cu2O9+δ) and Co-1232 (CoSr2(Ce0.67Y0.33)3Cu2O11+δ) samples Cu valence does not increase high enough to induce superconductivity.  相似文献   

2.
Superconductivity characteristics have been systematically evaluated for a two-CuO2-plane copper oxide system, (Cu,Mo)-12s2, upon increasing the number of fluorite-structured layers, s, between the two CuO2 planes. Essentially single-phase samples of (Cu0.75Mo0.25)Sr2YCu2O7+δ (s=1), (Cu0.75Mo0.25)Sr2(Ce0.45Y0.55)2Cu2O9+δ (s=2) and (Cu0.75Mo0.25)Sr2(Ce0.67Y0.33)3Cu2O11+δ (s=3) were synthesized through a conventional solid-state route in air. To make the samples superconductive an additional high-pressure oxygenation (HPO) treatment was required. Such treatment (carried out at 5 GPa and 500 °C in the presence of 75 mol% Ag2O2 as an oxygen source to maximize the Tc) compressed the crystal lattice for the three members of the (Cu0.75Mo0.25)-12s2 series equally, i.e., by 0.01 Å for the a parameter and by 0.07 Å for the c parameter per formula unit. From both Cu L-edge and O K-edge XANES spectra the s=1 sample was found to possess the highest overall hole-doping level among the HPO samples. Accordingly it exhibited the best superconductivity characteristics. With increasing s, both the Tc (s=1: 88 K, s=2: 61 K, s=3: 53 K) and Hirr values got depressed, being well explained by the trend of decreasing CuO2-plane hole concentration with increasing s as revealed from O K-edge XANES spectra for the same samples. Hence, the present results do not suggest any significant (negative) impact on the superconductivity characteristics from the gradually thickened fluorite-structured block itself.  相似文献   

3.
We have conducted a systematic 57Fe Mössbauer study on BaR(Cu0.5Fe0.5)2O5+δ double perovskites with various oxygen contents and rare-earth elements (R=Lu, Yb, Y, Eu, Sm, Nd, and Pr). In samples based on R=Lu, Yb, Y, Eu, Sm the oxygen content remained at δ≈0, upon reductive or oxidative heat treatments under normal pressure. The larger rare-earth elements, i.e. Nd or Pr, readily allowed for continuous oxygen content tuning up to δ≈0.3. By employing high-pressure heat treatments higher oxygen contents were achieved for all samples. The Néel temperature of the samples was found to decrease with increasing amounts of oxygen entering the lattice. In high-pressure oxygenated samples the decrease was less severe indicating that despite the incorporation of oxygen a large amount of Fe still remains in the high-spin trivalent state. By using charge-neutrality arguments together with the relative intensities of the Mössbauer spectral components the average valences of Fe and Cu were obtained. Oxygenation under normal pressure led to a corresponding increase of the valence of Fe, while Cu remained divalent. Upon high-pressure heat treatment equal amounts of Fe3+ and Cu2+ were found to be oxidized to Fe5+ and Cu3+, respectively.  相似文献   

4.
In this paper, we report the effects of the substitution of Sr by Eu on the properties of Bi-2201 ceramics. Samples with nominal compositions of Bi2Sr2?xEuxCuOy (x = 0–0.4) are elaborated in air by solid state reaction. They are characterized by means of X ray diffraction (XRD), scanning electron microscopy (SEM), magnetic and resistivity measurements. The undoped sample (x = 0) is monophasic and its structure belongs to phase A. No trace of superconductivity is observed down to 2 K for this sample and the variation of resistivity with temperature shows a semiconducting behaviour. As Eu is added and for x  0.2, the samples convert totally to B or Raveau phase and become superconducting. The highest Tc, obtained from both magnetic and resistivity measurements, is observed for x = 0.3. In the normal state, all the samples exhibit a semiconducting character which decreases as well as resistivity when the Eu content increases. The refinement of cell parameters is done with considering the structural modulation. The study shows that the substitution of Sr2+ by Eu3+ leads to an increase of a and b parameters, while c decreases similarly to those of the La doped phases. The a axis component of the modulation is observed to be independent of Eu content, while the c axis one increases slightly as this content increases. The XRD analysis has also revealed that the limit solubility of the used Eu2O3 oxide is situated between x = 0.3 and 0.4 of Eu content. The SEM micrographs show that the undoped sample consists of poorly connected grains with a random distribution. A quite different microstructure is obtained for the doped samples. The grains are more connected and have a flat shape which is characteristic of the Bi-based superconductors.  相似文献   

5.
Generation of holes is facilitated in the Cu(Ba0.8Sr0.2)2 (Yb1−xCax)Cu2O6+z (Cu-1212) system by two independent ways, i.e., by Ca substitution (0≤x≤0.35) and O doping (0<z<1). The distribution of holes between the CuO2-(Yb1−xCax)-CuO2 block containing two identical superconductive CuO2 planes and the “charge-reservoir” block consisting of a single CuOz chain has been quantitatively investigated by means of O K-edge and Cu L2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy. The resultant values for the CuO2-plane hole concentration are compared with those calculated employing the bond-valence-sum (BVS) method from the neutron powder diffraction (NPD) data previously reported for the same samples. The results of the two methods are in good agreement. The two independent hole-doping ways are found to result in different distributions of holes over the crystal, i.e., different ratios of hole numbers at the CuO2 plane and the CuOz chain. With Ca substitution holes are directed efficiently into the CuO2 plane, while for O doping holes are more homogeneously distributed between the CuO2 plane and the CuOz chain. Moreover, the value of Tc at a fixed CuO2-plane hole concentration is shown to be higher for Ca-substituted than for O-doped samples.  相似文献   

6.
We report systematic studies on the relations among the CeIV-for-NdIII substitution level (x), oxygen-partial pressure (PO2), oxygen content (4+δ), lattice parameters (a, c) and superconductivity characteristics (Tc, volume fraction) in the (Nd1−xCex)2Cu1−yO4+δ system which includes electron-doped superconductors. Independent of the Ce-doping level x, samples synthesized in air are found oxygen deficient, i.e. δ<0. Nevertheless, reductive annealing is needed to induce superconductivity in the air-synthesized samples. At the same time, the amount of oxygen removed upon the annealing is found very small (e.g. 0.004 oxygen atoms per formula unit at x=0.075), and consequently the effect of the annealing on the valence of copper (and thereby also on the electron doping level) is insignificant. Rather, the main function of the reductive annealing is likely to repair the Cu vacancies believed to exist in tiny concentrations (y) in the air-synthesized samples.  相似文献   

7.
The sorption species of Eu(III) on γ-Al2O3 and bentonite was investigated by batch, surface complexation model (SCM), and X-ray absorption spectroscopy (XAS). The results showed that sorption edges of Eu(III) on γ-Al2O3 and bentonite were as expected shifted forward high pH with the increasing in Eu(III) concentration, and sorption of Eu(III) was strongly dependent on pH. In γ-Al2O3 system, sorption of Eu(III) was decreased above pH 8.5 at low concentration of Eu(III) because of water soluble carbonate species of Eu(III), however the decline did not appear at high concentration of Eu(III) possibly due to a offset effect of surface precipitation. Actually, the sorption species of Eu(III) on bentonite mainly referred to at least four kinds of species including ion exchange (>X3Eu0) at low pH, inner-sphere complexes (>AlOEu2+ and >SiOEu2+) at neutral condition, and hydrolysis species (>SiOEu(OH) 2 0 ) at alkaline condition. Linear combination fitting (LCF) in k space testified that hydrolysis of Eu(OH)3(s) and oxide of Eu2O3 species were major for Eu(III) sorption on γ-Al2O3, whereas Eu3+(aq) and hydrolysis species comprised sorption species on bentonite. Extended X-ray absorption fine structure (EXAFS) analysis further confirmed the prediction from SCM and LCF. In addition, the typical shells of Eu–Al in R range of 3.0–3.4 Å and Eu–Si at ~4.0 Å were found in radial structure functions, which was possibly identified to edge-shared bidentate of Eu(III) on Al2O3 and bentonite.  相似文献   

8.
We report X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), and Mössbauer spectroscopy (MS) measurements performed on a natural tapiolite with composition Fe0.57Mn0.37Ti0.10Ta1.27Nb0.67O6. XRD and MS suggest that besides being partially ordered the as-collected sample is a mixture of trirutile (P42/mnm, a=4.7532(9) Å, c=9.228(7) Å) and Nb-rich rutile (P42/mnm, a=4.856(2) Å, c=3.098(1) Å) structures. The Mössbauer spectra of the rutile (Fe, Mn, Ta, Nb)O2 were fitted to Δ=1.72±0.05 mm/s and δ=1.10±0.03 mm/s at 300 K and to Δ=2.10±0.06 mm/s and δ=1.18±0.03 mm/s at 80 K. The present results suggest that cation ordering in compounds of the tapiolite series can be easily assessed by Mössbauer spectroscopy in a way similar to that as previously demonstrated for the columbite series.  相似文献   

9.
La4BaCu5−xMxO13+δ: M=Fe, Co, Ni, Zn were prepared by the solid-state route at 1000°C. Solid solution limits of x=1.0(1) [Fe], x=1.1(1) [Co], x=1.56(7) [Ni] and x=0.47(1) [Zn] were determined from XRD and EPMA results. Rietveld refinement of combined XRD/neutron powder diffraction data was carried out on undoped La4BaCu5O13+δ and x=1 for M=Fe, Co, Ni. For La4BaCu5O13+δ, which is an oxygen-deficient perovskite, the presence of square planar CuO4 groups, disordered over the Cu(2) sites with CuO5 square pyramids, is indicated, together with, for δ<0, either square planar CuO4 or square pyramidal CuO5 and octahedral CuO6 groups disordered over the Cu(1) sites. For M=Fe, Ni, there was preferential substitution onto the one-fold octahedral site; for M=Co, substitution took place on both the one-fold octahedral and four-fold square pyramidal sites.  相似文献   

10.
The phase relations in the pseudo-binary system SrO-Fe2O3 have been investigated in air up to 1150°C by means of powder X-ray diffraction and thermal analysis. Sr3Fe2O7−δ, SrFeO3−δ and SrFe12O19 are stable phases in the entire investigated temperature region, whereas Sr2FeO4−δ and Sr4Fe3O10−δ decompose above 930±10°C and 850±25°C, respectively. Sr4Fe6O13±δ is entropy-stabilized relative to SrFeO3−δ and SrFe12O19 above 775±25°C. Extended solid-solution SrxFeO3−δ was demonstrated. On the Fe-deficient side, the extent of solid solubility appeared to decrease gradually with temperature, whereas an abrupt decrease due to formation of Sr4Fe6O13±δ was observed above 775°C on the Sr-deficient side.  相似文献   

11.
The optical properties of the BaMgAl10O17:Eu2+ (BAM)-Ba0.75Al11O17.25:Eu2+ (BAL) solid solution have been studied using VUV excitation, emission and reflectance spectroscopy. Three unique Eu2+ emission centers are observed in a ratio that depends on the composition of the host and the dopant concentration. Two of the emission centers are assigned to Eu on normal Beevers-Ross sites and Eu on anti Beevers-Ross sites. The defect chemistry of this system is modeled based on the known behavior of the spinel (MgO·nAl2O3) system. Based on this model, the third Eu center can be assigned either to Eu near Al vacancies or to Eu associated with O atoms in the cation layer. In undoped materials exciton emission is observed, peaking at 263 nm in BAM and 285 nm in BAL. This emission may be the mechanism of host-to-activator energy transfer in these phosphors.  相似文献   

12.
New interesting luminescent α-sialon (M(m/val+)val+ Si12-(m+n) Al(m+n)OnN(16−n)) (M=Ca, Y) materials doped with Ce, Tb, or Eu have been prepared and their luminescence properties studied. These show that Tb and Ce are in the 3+ and Eu in the 2+ state. Low-energy 4f↔5d transitions are observed as compared to the luminescence of these ions doped in oxidic host-lattices. This is partially explained by the nitrogen-rich coordination of the rare-earth ion and partially by the narrow size of the lattice site. The latter gives rise to a strong crystal-field splitting of the 5d band and a rather large Stokes shift for Ce3+ and Eu2+ (6500-7500 and 7000-8000 cm−1, respectively). For (Y,Tb)-α-sialon the Tb3+ 4f→5d excitation band (∼260 nm) is in the low-energy host-lattice absorption band (?290 nm), giving rise to a strong absorption for 254-nm excitation, but a low quantum efficiency. The latter is due to photoionization processes or selective excitation of Tb3+ at the defect-rich surface, resulting in radiationless transitions. Ce- and Eu-doped Ca-α-sialon show bright long-wavelength luminescence (maxima at 515-540 and 560-580 nm for Ce and Eu, respectively) with a high quantum efficiency and high absorption for 365- and 254-nm excitation. The Eu2+ emission intensity and absorption increases for increasing m, which is explained by the Eu2+ richer α-sialon composition. The position of the Eu emission does not shift with changing composition of the host-lattice (m, n values), indicating that the local coordination of the Eu2+ ion is hardly dependent on the matrix composition.  相似文献   

13.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

14.
The (Cu0.5Tl0.25Li0.25)Ba2Ca2Cu3?ySiyO10?δ (y = 0, 0.25 0.5, 0.75, 1.0, 1.25) superconductor samples have been prepared by solid-state reaction method. The critical temperature and as well as the magnitude of diamagnetism is increased up to Si concentration y = 1.0, however, from the doping level y = 1.25 a decrease in the critical temperature along with the vanishing of the diamagnetism was observed. The carrier’s in the conducting CuO2/SiO2 planes were optimized by carrying out post-annealing in oxygen and an increase in the critical temperature was observed in all Si doped samples. The doping efficiency of Cu0.5Tl0.5Ba2O4?δ charge reservoir layer in (Cu0.5Tl0.25Li0.25)Ba2Ca2Cu3?ySiyO10?δ (y = 0, 0.25 0.5, 0.75, 1.0, 1.25) samples is enhanced by doping Li+1 ion; as alkali metals are known to easily loose their outer most electron which could be supplied to CuO2/SiO2 conducting planes and would suppress the anti-ferromagnetism in the inner conducting planes. The FTIR absorption measurements have provided an indirect evidence of Si substitution at in CuO2 planes.  相似文献   

15.
The chemical stability of the layered Li1−xCoO2 and Li1−xNi0.85CoO.15O2 cathodes is compared by monitoring the oxygen content with lithium content (1−x) in chemically delithiated samples. The Li1−xCoO2 system tends to lose oxygen from the lattice at deep lithium extraction while the Li1−xNi0.85Co0.15O2 system does not lose oxygen at least for (1−x)>0.3. This difference seems to result in a lower reversible (practical) capacity (140 mA h/g) for LiCoO2 compared to that for LiNi0.85Co0.15O2 (180 Ma h/g). The loss of significant amount of oxygen leads to a sliding of oxide layers and the formation of a major P3 and a minor O1 phase for the end member CoO2−δ with δ=0.33. In contrast, Ni0.85Co0.15O2−δ with a small amount of δ=0.1 maintains the initial O3 layer structure.  相似文献   

16.
Strongly overdoped samples of the three-CuO2-plane copper-oxide superconductor, CuBa2Ca2Cu3O8+z or Cu-1223, were obtained through high-pressure synthesis and post-annealed to various hole-doping levels so as to have the value of Tc range from 65 to 118 K. A concomitant decrease in the average valence of copper from ∼2.20 to ∼2.05 was evidenced by means of wet-chemical and thermogravimetric analyses and Cu L-edge X-ray absorption near-edge structure (XANES) spectroscopy. The valence value as low as ∼2.05 that corresponds to the highest Tc (=118 K) may be understood by taking into account multiple ways for holes to be distributed among the different Cu-O layers. In terms of actual chemical composition of the Cu-1223 phase, both Cu L-edge and O K-edge XANES results suggest that some portion of charge-reservoir copper atoms may have been replaced by CO, i.e., (Cu1−xCx)Ba2Ca2Cu3O8+x+z. The variation range of excess oxygen was estimated at Δz≈0.3.  相似文献   

17.
Non-resonant V L2,3 and OKα X-ray emission spectra of a new series of (Cu,V)Sr2Can−1CunOy (n=3-7) superconductors are presented. We have found that oxygen atoms surround V-atoms in the given compounds, form a (VO4)3− tetrahedrons and have a pentavalent state. This induces holes due to the substitution of divalent copper by pentavalent vanadium ions providing a hole-doping mechanism of superconductivity in this series of compounds. A spectral estimation of the oxygen concentration shows that the oxygen content under high-pressure/high-temperature synthesis conditions is not changed considerably from the start to the final product.  相似文献   

18.
A novel Eu3+ complex of Eu(DPIQ)(TTA)3 (DPIQ=10H-dipyrido [f,h] indolo [3,2-b] quinoxaline, TTA=2-thenoyltrifluoroacetonate) was synthesized and encapsulated in the mesoporous MCM-41, hoping to explore an oxygen-sensing system based on the long-lived Eu3+ emitter. The Eu(DPIQ)(TTA)3/MCM-41 composites were characterized by infrared spectra (IR), ultraviolet-visible (UV-vis) absorption spectra, small-angle X-ray diffraction (SAXRD), luminescence intensity quenching upon various oxygen concentrations, and fluorescence decay analysis. The results indicated that the composites exhibited the characteristic emission of the Eu3+ ion and the fluorescence intensity of 5D0-7F2 obviously decreased with increasing oxygen concentrations. The oxygen sensing properties of the composites with different loading levels of Eu(DPIQ)(TTA)3 complex were investigated. A sensitivity of 3.04, a short response time of 7 s, and good linearity were obtained for the composites with a loading level of 20 mg/g. These results are the best reported values for optical oxygen-sensing materials based on Eu3+ complexes so far.  相似文献   

19.
Host lattice Ba3Si5O13−δNδ oxonitridosilicates have been synthesized by the traditional solid state reaction method. The lattice structure is based on layers of vertex-linked SiO4 tetrahedrons and Ba2+ ions, where each Ba2+ ion is coordinated by eight oxygen atoms forming distorted square antiprisms. Under an excitation wavelength of 365 nm, Ba3Si5O13−δNδ:Eu2+ and Ba3Si5O13−δNδ:Eu2+,Ce3+ show broad emission bands from about 400-620 nm, with maxima at about 480 nm and half-peak width of around 130 nm. The emission intensity is strongly enhanced by co-doping Ce3+ ions into the Ba3Si5O13−δNδ:Eu2+ phosphor, which could be explained by energy transfer. The excitation band from the near UV to the blue light region confirms the possibility that Ba3Si5O13−δNδ:Eu2+, Ce3+ could be used as a phosphor for white LEDs.  相似文献   

20.
Two isostructural dinuclear lanthanide(III)/Schiff-base complexes [{Ce1.5Eu0.5(clapi)}2]·2CH3CN (1) and [{La1.5Eu0.5(clapi)}2]·2CH3CN (2) {H3clapi = 2-(5-chloride-2-hydroxyphenyl)-1,3-bis[4-(5-chloride-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine} have been prepared by template procedure and characterized by elemental analyses, ICP, IR, and single-crystal X-ray diffraction analyses. Lanthanide ions Ce(III) and Eu(III) in 1, and La(III) and Eu(III) in 2 are disordered with occupancies 0.75 for Ce and 0.25 for Eu in 1; 0.75 for La and 0.25 for Eu in 2. In the compounds, each lanthanide is coordinated to four N and four O atoms from two clapi3? ligands, forming a distorted square antiprism. Two phenol oxygen atoms from the middle arms of the two heptadentate μ2-bridging ligands connect the two Ce(Eu) atoms in 1, and La(Eu) in 2. The solution of the two complexes in CH2Cl2 exhibits red fluorescence from Eu3+ ions at 77 K, very weak at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号