首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The glass transition temperature (Tg), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi2O3-zB2O3 glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (αO2−) and optical basicity (Λ) of the glasses estimated using Lorentz-Lorenz equation increase with increasing ZnO or Bi2O3 content, giving the values of αO2−=1.963 Å3 and Λ=0.819 for 60ZnO-10Bi2O3-30B2O3 glass. The formation of BOBi and BOZn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (BMO) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strengths of 150.6 kJ/mol for ZnO bonds in ZnO4 groups, 102.5 kJ/mol for BiO bonds in BiO6 groups, 498 kJ/mol for BO bonds in BO3 groups, and 373 kJ/mol for BO bonds in BO4 groups. Good correlations are observed between Tg and BMO, Λ and BMO, and Tg and Λ, proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnOBi2O3B2O3 glasses.  相似文献   

2.
采用熔融-冷却法制备了xLa2O3-(40-x)Fe2O3-60P2O5(x=0,2,4,6,8,10mol%)系列玻璃。利用Raman光谱对玻璃结构进行表征,并测试了玻璃的密度和维氏硬度。结果表明,在玻璃形成范围内,玻璃结构以焦磷酸盐结构为主,伴有少量的正磷酸盐和偏磷酸盐结构单元。玻璃密度和硬度均随La2O3含量的增大而增加,La3+的引入有利于增强玻璃结构的稳定性。  相似文献   

3.
Optical and vibrational studies have been carried out on 60B2O3·(20−x)Na2O·10PbO·10Al2O3:xTiO2 (x=0, 1, 2, 3, 4, and 5 mol%) glasses, in order to understand the role of TiO2 in the 60B2O3·20Na2O·10PbO·10Al2O3 glass matrix. The X-ray patterns reveal homogeneous glasses over the entire compositional range. The absorption spectra show that the energy of the optical band gap (ΔEopt) and Urbach's energy (EU) decreases as TiO2 content increases. The changes observed in the Raman and IR spectra are related to the BO4→BO3 back conversion effect and the appearance of “loose” BO4 groups. The data indicate that titanium ions act as a network modifier.  相似文献   

4.
The ternary BaO-TiO2-B2O3 glasses containing a large amount of TiO2 (20-40 mol%) are prepared, and their optical basicities (Λ), the formation, structural features and second-order optical nonlinearities of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are examined to develop new nonlinear optical materials. It is found that the glasses with high TiO2 contents of 30-40 mol% show large optical basicities of Λ=0.81-0.87, suggesting the high polarizabity of TiOn polyhedra (n=4-6) in the glasses. BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are found to be formed as main crystalline phases in the glasses. It is found that BaTi(BO3)2 crystals tend to orient at the surface of crystallized glasses. The new XRD pattern for the Ba3Ti3O6(BO3)2 phase is proposed through Rietvelt analysis. The second harmonic intensities of crystallized glasses were found to be 0.8 times as large as α-quartz powders, i.e., I2ω(sample)/I2ω(α-quartz)=0.8, for the sample with BaTi(BO3)2 crystals and to be I2ω(sample)/I2ω(α-quartz)=68 for the sample with Ba3Ti3O6(BO3)2 crystals. The Raman scattering spectra for these two crystalline phases are measured for the first time and their structural features are discussed.  相似文献   

5.
Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li2O-4.0Al2O3-68.6SiO2-3.0K2O-2.6B2O3-0.5P2O5-0.9TiO2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li2SiO3) is the first phase to c form followed by cristobalite (SiO2) and lithium disilicate (Li2Si2O5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li3PO4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li3PO4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO4 (M=B, Al or Ti) complexes. The presence of BO3 and BO4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO3) increases at the expense of tetrahedrally coordinated B (BO4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.  相似文献   

6.
Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi2O-71.7SiO2-(17.7−x)Al2O3-4.9K2O-3.2B2O3-2.5P2O5 (5.1≤x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO3 and BO4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi2O6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li2Si2O5), lithium metasilicate (Li2SiO3) and quartz (SiO2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li3PO4 and a mixed phase (Li,K)3PO4 at low alkali concentrations.  相似文献   

7.
New types of composite materials belonging to the (100 − x) [50P2O5 · 30CaO · 20Na2O]xAg2O glasses system with 0 ? x ? 0.25 are obtained. Their local structure is analyzed with the help of Raman and infrared spectroscopy and it was found that the glasses structure is built up from predominantly ionic phosphate units. UV–VIS absorption measurements performed on the samples reveal the existence of silver nanoparticles within the soda–calcium-phosphate glass matrix. The electronic absorption spectra and TEM pictures analyses indicate the presence of silver nanoparticles of almost spherical shapes and various sizes inside the glass matrix, depending on the Ag2O content. By using the experimental UV–VIS data and a theoretical approach important structural and morphological parameters, such as the radius of the silver nanospheres and the volume fraction of the spheres are determined for one of the investigated composites (x = 0.05 mol%).  相似文献   

8.
Low frequency Raman spectra of glasses of the types (BaO)x·(B2O3)1−x and (BaCl2)y·[(BaO)x·(B2O3)1-y-x]1-y have been reported. The temperature reduced Raman spectra show peaks at 67, 116 and 140 cm−1 for the binary glass. The bands at 116 and 140 cm−1 are ascribed to the librational motions of the borate groups and the 67 cm−1 band arises because of the limited structural correlation range (SCR) of the glass network, causing a maximum of the frequency dependent Raman coupling coefficient. Due to addition of BaO in v-B2O3, the oxygen are mostly incorporated in the formation of BO4 units; however large Ba2+ ions also enhance the number of non-bridging oxygen at higher concentrations of dopant. These barium ions as well as chlorine ions are accomodated in the interstitial vacancies of the glass network which leads to an expansion of the network structure.  相似文献   

9.
Mixed alkali borotungstate glasses with xLi2O–(30  x)Na2O–10WO3–60B2O3 (0  x  30) composition were prepared by melt quench technique. FT-IR and Raman spectroscopic studies were employed to investigate the structure of all the prepared glasses. Acting as complementary techniques, both IR and Raman measurements revealed that the network structure of the present glasses mainly based on BO3 and BO4 units placed in different structural groups. Raman spectra confirm the IR results regarding the presence of tungsten ions mainly as WO6 groups. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system using FTIR and Raman studies.  相似文献   

10.
Glasses with composition 50Bi2O3–(50 ? x) B2O3xGeO2 (x = 0, 5, 10, 15 mol%) were prepared by conventional melting method. The thermal properties were investigated by differential thermal analysis (DTA) and the structures of the glasses were probed by Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The results show that density, refractive index and optical basicity increase with the increase of GeO2. The glass transition temperature (Tg), onset crystallization temperature (Tx) and ΔT (Tx ? Tg) increase as well. The cut-off edges in ultraviolet and infrared shift to longer wavelength by the addition of GeO2. Infrared, Raman and XPS results indicate that the glass network consists of [Bi–O6] octahedron, [BO3] triangle, [BO4] tetrahedron and [GeO4] tetrahedron and borate oxide mainly exists in [BO3] units. XPS result indicates Ge4+ ions form steady [GeO4] tetrahedra units in the glass network and the number of non-bridging oxygens decreases with the addition of GeO2.  相似文献   

11.
Some K2O-TiO2-GeO2 glasses with a large amount of TiO2 contents (15-25 mol%) such as 25K2O-25TiO2-50GeO2 have been prepared, and their electronic polarizability, Raman scattering spectra, and crystallization behavior are examined to clarify thermal properties and structure of the glasses and to develop new nonlinear optical crystallized glasses. It is proposed that the glasses consist of the network of TiO6 and GeO4 polyhedra. The glasses show large optical basicities of Λ=0.88-0.92, indicating the high polarizabity of TiOn (n=4-6) polyhedra in the glasses. K2TiGe3O9 crystals are formed through crystallization in all glasses prepared in the present study. In particular, 20K2O-20TiO2-60GeO2 glass shows bulk crystallization and 18K2O-18TiO2-64GeO2 glass exhibits surface crystallization giving the c-axis orientation. The crystallized glasses show second harmonic generations (SHGs), and it is suggested that the distortion of TiO6 octahedra in K2TiGe3O9 crystals induces SHGs.  相似文献   

12.
The present investigation reports the effect of influence of aluminum ions on radiation damage of strontium borosilicate glasses studied by means of spectroscopic (viz., optical absorption (OA), infrared and Raman spectra). The composition of the glasses chosen for the study is 40SrO–xAl2O3–(15-x) B2O3–40SiO2 (x = 5, 7.5, 10), all in mol%. The glasses were synthesized by conventional melt quenching method. Later, the samples were exposed to gamma (γ) radiation dose of strengths 10 kGy and 30 kGy with a dose rate of 1.5 Gy/s using 60Co as radiation source. The infrared spectra (IR), Raman spectra and optical absorption (OA) spectra of the samples were recorded at ambient temperature before and after irradiation. The OA spectra of the pre-irradiated samples do not exhibit any absorption bands in the UV–vis regions and IR and Raman spectra exhibited conventional vibrational bands due to different borate, silicate AlO4 and AlO6 structural units. The OA spectra of post irradiated samples exhibited a broad absorption band in the wavelength region 600–750 nm; it is attributed to electron trapped color centers. The intensity of this peak is observed to increase with increase of the γ-ray dose. Considerable changes in the intensities of various bands in the IR and Raman spectra were also observed. The changes were explained based on structural modifications taking place in the glass network due to γ-ray irradiation and finally it is concluded that the glasses mixed with 10.0 mol% of Al2O3 are relatively more radiation resistant.  相似文献   

13.
Tellurite glasses with composition 75TeO2–5WO3–15Nb2O5–5MxOy in mol%, where MxOy = (Na2O, Ag2O, ZnO, MgO, CuO, NiO, TiO2, MnO2) have been prepared by using the conventional melt-quenching method. Thermal characteristic of prepared glasses were investigated by using DTA techniques. It was found that the glass with the composition 751TeO2–5WO3–15Nb2O5–5TiO2 had high thermal stability (ΔT = 122 °C at heating rate 15 K/min). Raman gain coefficients and bandwidths of prepared glasses for Raman gain media were evaluated. The glass with composition 75TeO2–5WO3–15Nb2O5–5Na2O had the maximum value of Raman gain coefficient (g = 4.43 × 10−12 m/W) and it was 24 times as large as silica glass. The highest value of full width half maximum (FWHM ≈ 185 cm−1) was observed in glass system 75TeO2–5WO3–15Nb2O5–5NiO. Finally, the structure of the glasses was investigated through deconvolution Raman and IR spectra.  相似文献   

14.
Infrared spectra of xBaO·(30-x)PbO·70B2O3, xBaO·(40-x)PbO·60B2O3 and xBaO·(50-x)PbO·50B2O3 glasses have been quantitatively analyzed. The fraction of four coordinated boron atoms varies linearly, for each group, between the values of the corresponding binary borate glasses. The data could be used to calculate and follow the composition dependence of the concentration of structural units in all glasses. The results show a linear increase in the ratio of PbO forming BO4 units to the total content of PbO, with increasing B2O3 in binary PbO–B2O3 glasses. Similar behavior has been observed for the ratio of BaO forming BO4 units to the total content of BaO in binary BaO–B2O3 glasses. The ratio of PbO forming PbO4 units to the total PbO content, and that of BaO forming asymmetric BO3 units to the total BaO content, shows a reversed dependence. The linear change in fraction of four coordinated boron atoms and in density and molar volume suggests that the studied glasses can be treated as mixtures of binary PbO–B2O3 and BaO–B2O3 matrices.  相似文献   

15.
The article presents a simple method that can be used to get the concentration of various species in mixed-modifier borate glasses. By using the fraction of four coordinated boron in xCaO (30  x)Na2O70B2O3 (0  x  27.5 mol%) and xCaO(40  x)Na2O60B2O3 glasses (10  x  40 mol%), the concentration of BO4 and asymmetric BO3 units related to each modifier oxide could be determined. CaO has a greater tendency to form asymmetric BO3 units in the first glass series, while Na2O has the ability to form BO4 units to a greater extent. In xCaO(40  x)Na2O60B2O3 glasses, BO4 and asymmetric BO3 units are formed at the same rate from Na2O and CaO. The fraction of four coordinated boron, can be predicted by treating the studied glasses as if they are mixtures of Na2O–B2O3 and CaO–B2O3 matrices. The change in N4 is due to change in the relative concentration of these matrices.  相似文献   

16.
Glasses with compositions 60Bi2O3–(40?x)B2O3–xGa2O3 (x = 5, 10, 15, 20 mol%) are prepared by conventional melting method. The thermal properties are investigated by differential thermal analysis (DTA) and the structures of the glasses were probed by Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The results show that density, refractive index and optical basicity increase with the increase of Ga2O3. The glass transition temperature (Tg), the onset crystallization temperature (Tx), ΔT (Tx?Tg) decrease with the content of Ga2O3. The cut-off edges in ultraviolet and infrared shift to longer wavelength with the increase of Ga2O3. On the other hand, the addition of Ga2O3 causes a progressive coordination number change of the boron atom from 3 to 4. XPS result indicates both Bi5+ and Bi3+ exist in 5 mol% Ga2O3 content, while Bi5+ amounts decrease with the increase of Ga2O3 contents. The glass is mainly composed of [BiO6], [BO3], [BO4] and [GaO4] polyhedra. Glasses are supposed to have layer structure. [BO3] triangle and [BO4] tetrahedra may be located between the [GaO4] tetrahedral and [BiO6] octahedra to prevent crystallization and to compensate electric charge.  相似文献   

17.
The ultrasonic parameters, the optical parameters along with the IR spectroscopy and magnetic susceptibility studies have been employed to explore the role of Gd2O3 in the structure of the glasses xGd2O3–60B2O3–10MoO3–(30-x)Bi2O3, with 0 ≤ x ≤ 7 mol %. IR analysis indicates that Gd2O3 is preferentially incorporated into the borate network-forming BO4 units. It is assumed that Bi2O3 and MoO3 enter the structure as modifiers in the form of BiO6 and MoO6 only. The compositional dependence of the mechanical and the optical parameters are interpreted in terms of the transformation of the structural units BO3 into BO4, the increase in the number of bridging oxygen atoms, and the substitution of high bond strength Gd–O, in the place of low bond strength Bi–O bond. The results of the magnetic susceptibility reveal the paramagnetic behavior as described by the Curie-Weiss law and indicating the presence of weak antiferromagnetic exchange interactions between Gd3+ ions. The magnetic entropy change of the glasses was determined according to the temperature and magnetic field dependence of magnetization.  相似文献   

18.
The structure of barium-titanium-metaborate xBaO-xB2O3-yTiO2 (y=0%, 4%, 8%, 16% and x=50-y/2) amorphous and crystallized powders, obtained using a polymeric precursor method, was investigated by Ti and B K-edge X-ray absorption spectroscopy (XAS) and 11B-NMR high-resolution techniques. XANES study of amorphous samples shows that Ti4+ ions exist as [4]Ti species associated to [6]Ti and [5]Ti species in a practically equivalent amount. After crystallization, titanium environment is predominately composed by [6]Ti species. According to XANES results obtained at the B K-edge, the fraction of boron in tetrahedral sites ([4]B) reduces as the amount of TiO2 is increased from x=0% to 4%, with a consequent increase of boron in trigonal sites ([3]B). By a combination of 11B-NMR spin-echo and triple quantum magic angle spinning (3Q-MAS) techniques, the detailed borate speciation was determined as consisting in [4]B and two kind of trigonal sites, [3]BA and [3]BB, corresponding, respectively, to borates sharing three and two O atoms with other boron units. NMR results reveal not only the reduction in boron coordination also seen by XANES but also the simultaneous reduction in the condensation degree of trigonal units, when the Ti content is increased in the glass. In crystallized samples, β-BaB2O4 and BaTi(BO3)2 phases were identified and quantified by 11B-NMR.  相似文献   

19.
Two series of metal iodide doped chalcohalide glasses (100−2x)GeS2·xGa2S3·xPbI2 (0?x?20) and (100−x)(0.8GeS2·0.2Ga2S3xPbI2 (0?x?15) were prepared and characterized. The microstructure of these glasses has been studied by Raman scattering spectra. Utilizing femtosecond time-resolved optical Kerr effect (OKE) technique at the wavelength of 820 nm, a largest third-order nonlinearity χ(3) of 2.07×10−13 esu was obtained for the 90GeS2·5Ga2S3·5PbI2 glass, and it decreases with the addition of PbI2 in both two series. After thermally poled, second-harmonic generation (SHG) has been observed in these glasses according to Maker fringe method and a large second-order nonlinearity χ(2) as well as 4 pm/V was obtained for the 70GeS2·15Ga2S3·15PbI2 glass. The variations of χ(2) and χ(3) on glass composition are ascribed to the evolution of micro-structural units in glass. These novel chalcohalide glasses would be expected to be the promising candidate materials for nonlinear optical devices.  相似文献   

20.
New glasses giving the crystallization of Sm3+-doped SrxBa1−xNb2O6 (SBN) ferroelectrics have been developed in the Sm2O3−SrO−BaO−Nb2O5−B2O3 system, and the formation of SBN crystal dots and lines by continuous wave Nd:YAG laser (wavelength:1064 nm, power: 1 W) irradiations, i.e., samarium atom heat processing, has been examined. The formation of Sm3+-doped SBN non-linear optical crystals is confirmed from X-ray diffraction analyses, micro-Raman scattering spectra, second harmonic generations, and photoluminescence spectra. Sm3+-doped SBN crystal dots with the diameters of 20-70 μm and lines with the widths of 20-40 μm are written at the surface of some glasses such as 10Sm2O3·10SrO·10BaO·20Nb2O5·50B2O3 (mol%) by Nd:YAG laser irradiations with the irradiation times of 20-70 s for the dots and with the scanning speeds of 1-5 μm/s for the lines. The present study suggests that the samarium atom heat processing has a potential for the patterning of optical waveguides consisting of ferroelectric SBN crystals in glass substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号