共查询到20条相似文献,搜索用时 16 毫秒
1.
The binary compound Rh3Bi14 was synthesized from the elements. The compound is isostructural with Rh3Bi12Br2, crystallizes with the orthorhombic space group Fddd (no. 70) and lattice parameters a=6.8959(15) Å, b=17.379(3) Å, c=31.758(6) Å. The crystal structure consists of a three-dimensional (3D) framework of edge-sharing cubes and square antiprisms (RhBi8/2). It is closely related to the intermetallic compound RhBi4, in which two Y-like frameworks of antiprisms interpenetrate. In Rh3Bi14 and Rh3Bi12Br2, additional bismuth and bromine anions, respectively, fill the channels of the 3D polyhedral framework formed by covalently bonded rhodium and bismuth atoms. High-pressure X-ray powder diffraction data from synchrotron measurements of Rh3Bi14 and Rh3Bi12Br2 indicate a high stability of both compounds in the investigated range from ambient pressure to ca. 30 GPa at ambient temperature. 相似文献
2.
Hyungrak Kim 《Journal of solid state chemistry》2005,178(6):1935-1939
The compound Ca14MnP11 crystallizes in the Ca14AlSb11 structure type with the tetragonal space group I41/acd (Z=8) and lattice parameters of , c=20.7565(9) at 90 K. The structure consists of MnP49− tetrahedron, P37− trimer, 4 P3− isolated anions and 14 Ca2+ cations. Similar to other compounds of this structure type containing phosphorous, the P37− trimer has a central P atom that is best modeled in the structure as being equally split between two sites. In addition, there is no additional distortion of the manganese-containing tetrahedron compared with the main group analog, Ca14GaP11, suggesting that the Mn oxidation state is Mn2+. Temperature-dependent magnetic susceptibility shows that the compound is paramagnetic over the entire temperature range measured (2-300 K). The data can be fit with a modified Curie-Weiss law and provide an effective magnetic moment of 5.80 (2) B.M. with a Weiss constant of −2.13(2) K and . This moment is significantly higher than those measured for any of the Mn-containing analogs and is consistent with Mn2+. This result will be discussed in light of the electron counting scheme for Mn compounds of the Ca14AlSb11 structure-type. 相似文献
3.
Synthesis, crystal structures, magnetic and electric transport properties of Eu11InSb9 and Yb11InSb9
Sheng-qing Xia Svilen Bobev Arif Ozbay Veronika Fritsch 《Journal of solid state chemistry》2007,180(7):2088-2094
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed. 相似文献
4.
Svilen Bobev Veronika Fritsch John L. Sarrao Richard Dronskowski 《Journal of solid state chemistry》2005,178(4):1071-1079
A new rare-earth rich Zintl phase Yb11GaSb9 was synthesized by direct fusion of the corresponding elements, and large single crystals of the compound were obtained from high temperature flux synthesis. Its crystal structure was determined by single-crystal X-ray diffraction to be orthorhombic in the non-centrosymmetric space group Iba2 (No. 45), Z=4 (R1=3.24%, wR2=6.40%) with , , measured at 90(3) K. The structure belongs to the Ca11InSb9-type and can be viewed as built of isolated Sb4-tetrahedra centered by Ga, Sb-dimers and isolated Sb anions, which are separated by Yb2+ cations. Electron count according to the Zintl formalism suggests that the phase is electron-precise and charge-balanced, which is supported by the virtually temperature-independent magnetization for Yb11GaSb9. Electrical resistivity data from 2 to 400 K confirm that Yb11GaSb9 is a small band-gap semiconductor with room temperature resistivity , and low-temperature resistivity at 2 K . As such, Yb11GaSb9 and related compounds might be promising materials for thermoelectric applications, and currently, efforts to synthesize new members of this family and test their thermoelectric performance are under way. 相似文献
5.
The ternary Zintl compound europium tin antimonide, EuSn3Sb4, has been synthesized at 900°C in the presence of a tin flux, and its structure has been determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group D162h-Pnma with a=9.954(2), b=4.3516(7), c=22.650(4) Å, and Z=4 at 22°C. EuSn3Sb4 is isostructural to SrSn3Sb4; it possesses channels defined by an anionic framework of shared SnSb4 tetrahedra, SnSb3 trigonal pyramids, and Sb–Sb zigzag chains, and it is filled by Eu2+ cations. Resistivity measurements indicate weakly metallic behavior for ASn3Sb4 (A=Eu, Sr) and the structurally related Ba2Sn3Sb6. The anisotropic metallic nature of these compounds is explained through extended Hückel band structure calculations. 相似文献
6.
Hyungrak KimQingzhen Huang Jeffrey W. LynnSusan M. Kauzlarich 《Journal of solid state chemistry》2002,168(1):162-168
The magnetic ordering of the tetragonal Ca14MnSb11 compound (space group I41/acd) has been determined by high-resolution neutron diffraction on powder samples. Neutron data were obtained at temperatures of 1.4, 10, 95 K, and room temperature. Refinement of the magnetic structure reveals a ferromagnetic ordering of Mn magnetic moments lying in the a-b plane below the TC of 63 K. The low-temperature-ordered magnetic moment on the Mn ion is 3.4(2) μB at 1.4 K. The results are confirmed by magnetic susceptibility measurements, which show that the easy magnetization direction of the compound is perpendicular to the c-axis and the system orders ferromagnetically at 63 K, in good agreement with neutron diffraction results. A large negative magnetoresistance effect (Δρ/ρ(H)=−34.4%) at the magnetic transition temperature is observed in applied magnetic fields up to 6 T. 相似文献
7.
The study of curium iodate, Cm(IO3)3, was undertaken as part of a systematic investigation of the 4f- and 5f-elements’ iodates. The reaction of 248CmCl3 with aqueous H5IO6 under mild hydrothermal conditions results in the reduction of IO65− to IO3− anions, and the subsequent formation of Cm(IO3)3 single crystals. Crystallographic data are: (193 K, MoKα, ): monoclinic, space group P21/c, , , , β=100.142(2)°, V=811.76(14), Z=4, R(F)=2.11%, for 119 parameters with 1917 reflections with I>2σ(I). The structure consists of Cm3+ cations bound by iodate anions to form [Cm(IO3)8] units, where the local coordination environment around the curium centers can be described as a distorted dodecahedron. There are three crystallographically unique iodate anions within the structure; two iodates bridge between three Cm centers, and one iodate bridges between two Cm centers and has a terminal oxygen atom. The bridging of the curium centers by the iodate anions creates a three-dimensional structure. Three strong Raman bands with comparable intensities were observed at 846, 804, and 760 cm−1 and correspond to the I-O symmetric stretching of the three crystallographically distinct iodate ions. The Raman profile suggests a lack of inter-ionic vibrational coupling of the I-O stretching, while intra-ionic coupling provides symmetric and asymmetric components that correspond to each iodate site. Repeated collection of X-ray diffraction data for a crystal of Cm(IO3)3 over a period of time revealed a gradual expansion of the unit cell from self-irradiation. After 71 days, the new parameters were: , , , β=100.021(2)°, V=818.3(2). 相似文献
8.
Eleonora Bolli Alessio Mezzi Luca Burratti Paolo Prosposito Stefano Casciardi Saulius Kaciulis 《Surface and interface analysis : SIA》2020,52(12):1017-1022
The main purpose of the present work is to analyze a series of Ag nanoparticles (NPs) with different size or ligand functionalization by using X-ray photoelectron spectroscopy (XPS) and to identify the differences in the band-shape and energy peak position of photoemission spectra due to the particle dimension. A transmission electron microscopy characterization was performed, to verify the consistency of the results. Three types of samples were prepared starting from AgNO3 water solution and adding different capping agents. In the first two cases, the formation of NPs was promoted by the reduction of silver ions Ag+1 to metallic Ag0 through the addition of sodium borohydride, whereas in the last case, it was triggered by the exposure to UV light. Depending on the size of the NPs, a different physical behavior can be recognized. NPs with diameter of about 5 nm are characterized by the phenomenon of localized surface plasmon resonance (LSPR). The other type of samples having a diameter of about 1.5 nm presents discrete energy levels instead of electronic bands, and in this case, a typical fluorescence phenomenon can be observed. In the latter case, we can refer to such systems as nanoclusters. The XPS analyses were focused on the Ag 3D spectra looking for the possible shifts of the Ag doublet as a function of the particles size. The ultraviolet photoelectron spectroscopy with He II source was used for the investigation of possible changes in the valence band. 相似文献
9.
Crystals of the ternary La11(MnC6)3 and new quaternary carbide La14Sn(MnC6)3 phases were grown from La/Ni eutectic flux and their structures were determined by means of X-ray single crystal diffraction. La11(MnC6)3 is a new superstructure variant of La3.67MnC6 (previously reported disordered subcell: P63/m; a0=8.806 Å; c0=5.329 Å, Z=2). The superstructure (R3¯; a=√3a0=15.2649(9) Å; c=3c0=16.013(1) Å, Z=6; R1=0.022) is realized by complete ordering of the La chains within the columns of face-sharing carbon octahedra, with alternating La-La distances leading to R-centering and enlargement of the unit cell. The structure of the quaternary carbide La14Sn(MnC6)3 (P6¯; a=8.756(1) Å; c=10.483(2) Å, Z=1; R1=0.026) is closely related to that of La11(MnC6)3 with part of the MnC6 units replaced by Sn atoms. The structure and precise composition of La14Sn(MnC6)3 can be derived from that of La11(MnC6)3 by taking into account the extent of this substitution and variation in lanthanum siting in the chain of carbon octahedra. Band structure calculations indicate both phases are metallic; the La11(MnC6)3 phase is stabilized by the ordering of La atoms which induces a pseudogap at EF. 相似文献
10.
Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4 compounds were prepared in sealed Ta crucibles by induction melting and subsequent annealing. The crystal structures of Yb3Cu6Sn5 and Yb5Cu11Sn8 were determined from single crystal diffractometer data: Yb3Cu6Sn5, isotypic with Dy3Co6Sn5, orthorhombic, Immm, oI28, a=4.365(1) Å, b=9.834(3) Å, c=12.827(3) Å, Z=2, R=0.019, 490 independent reflections, 28 parameters; Yb5Cu11Sn8 with its own structure, orthorhombic, Pmmn, oP48, a=4.4267(6) Å, b=22.657(8) Å, c=9.321(4) Å, Z=2, R=0.047, 1553 independent reflections, 78 parameters. Both compounds belong to the BaAl4-derived defective structures, and are closely related to Ce3Pd6Sb5 (oP28, Pmmn). The crystal structure of Yb3Cu8Sn4, isotypic with Nd3Co8Sn4, was refined from powder data by the Rietveld method: hexagonal, P63mc, hP30, a=9.080(1) Å, c=7.685(1) Å, Z=2, Rwp=0.040. It is an ordered substitution derivative of the BaLi4 type (hP30, P63/mmc). All compounds show strong Cu-Sn bonds with a length reaching 2.553(3) Å in Yb5Cu11Sn8. 相似文献
11.
Auger and direct electron specta from crystalline AgGaSe2 and Ag9GaSe6 have been studied with X-ray photoelectron spectroscopy. It is shown that the AgM5N4,5N4,5 and M4N4,5N4,5 Auger spectra are more sensitive to the chemical environment than the Ag 3d direct photoelectron spectra. Furthermore the Auger parameter as defined by Wagner is used in order to characterize the chemical state of these compounds. Last, the XPS spectra of the valence-band region are investigated and chalcogen s and p and noble-metal d bands are clearly identified. The electronic structure of these two selenides does not seem to be determined predominantly by the crystal structure. As a whole, the spectral features are discussed in connection with the character of the chemical bonding and the physical properties of these compounds. 相似文献
12.
Peter E.R. Blanchard 《Journal of solid state chemistry》2010,183(7):1536-1544
The electronic structures of quaternary pnictides ZrCuSiPn (Pn=P, As) were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES). Shifts in the core-line XPS and the XANES spectra indicate that the Zr and Cu atoms are cationic, whereas the Si and Pn atoms are anionic, consistent with expectations from simple bonding models. The Cu 2p XPS and Cu L-edge XANES spectra support the presence of Cu1+. The small magnitudes of the energy shifts in the XPS spectra suggest significant covalent character in the Zr-Si, Zr-Pn, and Cu-Pn bonds. On progressing from ZrCuSiP to ZrCuSiAs, the Si atoms remain largely unaffected, as indicated by the absence of shifts in the Si 2p3/2 binding energy and the Si L-edge absorption energy, while the charge transfer from metal to Pn atoms becomes less pronounced, as indicated by shifts in the Cu K-edge and Zr K, L-edge absorption energies. The transition from two-dimensional character in LaNiAsO to three-dimensional character in ZrCuSiAs proceeds through the development of Si-Si bonds within the [ZrSi] layer and Zr-As bonds between the [ZrSi] and [CuAs] layers. 相似文献
13.
X-ray photoelectron spectroscopy (XPS) and laser Raman scattering (LRS) techniques have been employed to investigate the structure of amorphous (CuI)0.45–(Ag2WO4)0.55 solid electrolyte sample. XPS results reveal the presence of both Cu+ and Cu2+ ions whereas tungsten is found to exist only in the oxidation state of +6. The deconvolution of the O 1s spectrum into non-bridging and bridging oxygen atoms in conjunction with the laser Raman analysis tend to show that the amorphous (CuI)0.45–(Ag2WO4)0.55 solid electrolyte sample is composed mostly of octahedral WO6 units that probably form [W4O16]8− tetramer clusters, the existence of which is unique in the case of oxyhalide glasses. 相似文献
14.
15.
Eufrozina A. Hoffmann Zoltan A. Fekete Ljiljana S. Korugic-Karasz Frank E. Karasz Eugene Wilusz 《Journal of polymer science. Part A, Polymer chemistry》2004,42(3):551-556
The membrane properties of a Nafion surface can be modified by ion implantation with N+ or F+. The results are presented of an X-ray photoelectron spectroscopy (XPS) study of implanted surfaces. For the interpretation of the XPS spectra, calculations using a semiempirical quantum chemical formalism (AM1) have been applied, in conjunction with a charge-potential model, to predict the C1s core electron binding energies. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 551–556, 2004 相似文献
16.
A detailed X-ray photoelectron spectroscopy study has been performed for the CuRh1−xMgxO2 (x=0, 0.04 and 0.10) series for a better understanding of the role of the Mg2+ substitution on the electrical properties and the value of the Seebeck coefficient. This study is based on an analysis of different compounds such as Rh2O3, Sr2RhO4 and CuCrO2 in order to characterize different oxidation states (Rh3+ and Rh4+ in octahedral oxygen environment and Cu+ in a dumbbell O-Cu-O coordination). The Cu2p signal of copper in the non-doped compounds CuCrO2 and CuRhO2 reveals different electronic structures. An evolution of the Cu2p core signal with the increase of Mg2+ content in the CuRh1−xMgxO2 is highlighted by XPS. The differences observed, especially for the Cu2p core peaks are discussed for the non-doped compounds CuCrO2 and CuRhO2 as for the CuRh1−xMgxO2 series upon Mg2+ substitution. 相似文献
17.
Na4Si4 is a Zintl salt composed of Na+ cations and tetrahedral anions and is a unique solid-state precursor to clathrate structures and nanomaterials. In order to provide opportunities for the synthesis of complex materials, phosphorus was explored as a possible substituent for silicon. Phosphorus doped sodium silicides Na4Si4−xPx (x≤0.04) were prepared by reaction of Na with the mechanically alloyed Si4−x:Px (x=0.04, 0.08, 0.12) mixture in a sealed Nb tube at 650 °C for 3 days. Energy dispersive X-ray spectroscopy confirms the presence of P in all products. Powder X-ray diffraction patterns are consistent with the retention of the Na4Si4 crystal structure. As the amount of P increases, a new peak in the diffraction pattern that can be assigned to black phosphorus is apparent above the background. Raman and solid-state NMR provide information on phosphorus substitution in the Na4Si4 structure. Raman spectroscopy shows a shift of the most intense band assigned to the ν1 (A1) mode from 486.4 to 484.0 cm−1 with increasing P, consistent with P replacement of Si. Differential nuclear spin-lattice relaxation for the Si sites determined via 29Si solid-state NMR provides direct evidence for Si-P bonding in the (Si1−xPx)4− tetrahedron. The 23Na NMR shows additional Na…P interactions and the 31P NMR shows two P sites, consistent with P presence in both of the crystallographic sites in the (Si4)4− tetrahedron. 相似文献
18.
T.Z. Forbes 《Journal of solid state chemistry》2009,182(1):43-6303
The compound (NpO2)2(SO4)(H2O)4 was synthesized by evaporation of a Np5+ sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R1=0.0310. (NpO2)2(SO4)(H2O)4 crystallizes in triclinic space group P-1, a=8.1102(7) Å, b=8.7506(7) Å, c=16.234(1) Å, α=90.242(2)°, β=92.855(2)°, γ=113.067(2)°, V=1058.3(2) Å3, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO2)2(SO4)(H2O)4 was constructed to facilitate the structural comparison to similar Np5+ compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed. 相似文献
19.
BaV6O11 was synthesized under high pressures and crystallizes in a structure closely related to magnetoplumbite. [V(1)O6]-octahedra share common edges and form a Kagomé lattice normal to the hexagonal [0 0 1] direction. The layers are connected in the direction of c via trigonal [V(3)O5]-bipyramids and [V(2)O6]-octahedra, which share common faces. The Ba-atoms are incorporated into cavities of the vanadium oxide framework and are coordinated by 12 oxygen atoms in the shape of a dodecahedron.Three magnetic anomalies at approximately 250, 115 and 75 K were detected in this compound. All of them are accompanied by anomalies in the specific heat measurement. To characterize possible structural transitions and determine the response of the structure to the magnetic anomalies, single crystal X-ray diffraction studies were carried out in the temperature range from 293 to 80 K. At 250 K the compound undergoes a structural phase transition. The space group above the transition temperature is P63/mmc, at lower temperature the symmetry reduces to P63mc. For the refinements in P63mc an inversion twin model was used, this way accounting for the loss of the center of symmetry. The structural phase transition is characterized by a small displacement of the V(1)-atom (forming the Kagomé lattice) out of its central position in the octahedra. As a consequence part of the octahedral edges/angles are increased, while the opposite ones are decreased. One limiting surface of the octahedral sheet is corrugated, while the other one is smoothened with respect to the high-temperature structure. This deformation of the octahedral sheets leads to the corresponding geometrical changes in the other coordination polyhedra.The structural response to the magnetic anomaly at 115 K is weak and mainly observable in the geometric parameters concerning the [V(1)O6]-octahedra and [V(3)O5]-bipyramids. This may serve as a first indication that the corresponding central atoms play an important role in the mechanism of the magnetic phase transition. 相似文献
20.
Puravankara Sreeraj Rolf-Dieter Hoffmann Armin Kirfel 《Journal of solid state chemistry》2006,179(2):355-361
Large quantities of single phase, polycrystalline LiIrSn4 have been synthesised from the elements by melting in sealed tantalum tubes and subsequent annealing. LiIrSn4 crystallises with an ordered version of the PdGa5 structure: I4/mcm, a=655.62(8), . The lithium atoms were clearly localised from a neutron powder diffraction study: RP=0.147 and RF=0.058. Time-dependent electrochemical polarisation techniques, i.e. coulometric titration, chronopotentiometry, chronoamperometry and cyclic voltammetry were used to study the kinetics of lithium ion diffusion in this stannide. The range of homogeneity (Li1+ΔδIrSn4, −0.091?δ?+0.012) without any structural change in the host structure and the chemical diffusion coefficient (∼10−7-10−9 cm2/s) point out that LiIrSn4 is a first example of a large class of intermetallic compounds with lithium and electron mobility. Optimised materials from these ternary lithium alloys may be potential electrode material for rechargeable lithium batteries. 相似文献