首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS) is used to measure the high resolution absorption spectrum of H218O between 12,580 and 13,550 cm−1. This spectral region covers the 3v+δ polyad of very weak absorption. Four isotopologues of water (H218O, H216O, H217O, HD18O) are found to contribute to the observed spectrum. Spectrum analysis is performed with the aid of variational calculations and allowed for assigning 1126 lines belonging to H218O, while only 160 H218O lines are included in the HITRAN-2008 database. Altogether, 823 accurate energy levels of H218O are determined from transitions attributed to 26 upper vibrational states, 438 of them being reported for the first time. New information includes energy levels of four newly observed vibrational states of H218O: (2 4 0), (1 4 1), (0 4 2) and (2 3 1) at 13,167.718, 13,212.678, 13,403.71 and 15,073.975 cm−1, respectively. H218O transitions involving highly excited bending states like (1 6 0), (0 6 1), (0 7 1), (1 7 0), (0 9 0) and even (0 10 0) have been identified as a result of an intensity borrowing from stronger bands via high-order resonance interactions. Thirty-six new energy levels of H217O, present with a 2% relative concentration in our sample, could be determined. The rotational structure of the (0 2 3) state of HD18O at 13,245.497 cm−1 is also reported for the first time.  相似文献   

2.
The necessity to revisit water spectroscopy at 6 μm was prompted by recent work indicating that some prior measurements of H216O line strengths (ranging through seven orders of magnitude) had larger than expected systematic errors for the stronger transitions. To investigate this, linestrengths of stronger transitions were re-measured (with 14 new H2O spectra recorded with a Bruker 125 HR Fourier transform spectrometer at the Jet Propulsion Laboratory) and combined with re-analyzed prior results (obtained at higher optical densities from 32 spectra recorded with the FTS at Kitt Peak). Systematic differences for some of the older data sets were identified and corrected. In this paper, an internally-consistent sampling of 1243 selected line strengths are reported for (0 1 0)-(0 0 0) and (0 2 0)-(0 1 0) transitions between 783 and 2378 cm−1. To confirm experimental precisions, observed and calculated line strengths are compared.  相似文献   

3.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material.  相似文献   

4.
The high resolution absorption spectrum of the H218O isotopologue of water has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) with a sensitivity on the order of αmin ∼ 10−9 cm−1. The 11 520-12 810 cm−1 spectral region corresponding to the 3ν + δ decade of vibrational states, was explored with an ICLAS spectrometer based on a Ti:Sapphire laser. It allowed detecting transitions with an intensity down to 10−27 cm/molecule which is about 100 times lower than the weaker line intensities available in the literature, in particular in the HITRAN database.The rovibrational assignment was performed on the basis of the results of variational calculations and allowed for assigning 3659 lines to the H216O, H218O, H217O, HD16O and HD18O species, leaving only 1.7% unassigned transitions. A line list including 1712 transitions of H218O has been generated and assigned leading to the determination of 692 rovibrational energy levels belonging to a total of 16 vibrational states, 386 being newly observed. A deviation on the order of 25% has been evidenced for the average intensity values given by HITRAN and the results of variational calculations. Ninety two transitions of the HD18O isotopologue could also be assigned and the corresponding upper rovibrational levels are given.  相似文献   

5.
The absorption spectrum of nitrous oxide (N2O) has been recorded by Intracavity Laser Absorption Spectroscopy between 12,760 and 12,900 cm−1. The rotational analysis led to an improved determination of rovibrational parameters of the 6ν3 and 6ν322 bands of 14N216O. The high J rotational levels of the (0 0 06) and (0 1 16) upper states were found perturbed by an anharmonic interaction. Line intensity values of the 6ν3 band are provided and the main effective dipole moment parameter has been determined.  相似文献   

6.
We present the second part of the investigation of the high sensitivity absorption spectrum of nitrous oxide by CW-Cavity Ring Down Spectroscopy near 1.5 μm. In a first paper [A.W. Liu, S. Kassi, P. Malara, D. Romanini, V.I. Perevalov, S.A. Tashkun, S.M. Hu, A. Campargue, J. Mol. Spectrosc. 244 (2007) 33-47] devoted to the 6000-6833 cm−1 region, more than 6000 line positions of five isotopologues (14N216O, 15N14N16O, 14N15N16O, 14N217O, and 14N218O), were rovibrationally assigned to a total of 68 bands. The achieved noise equivalent absorption (αmin ∼ 2 × 10−10 cm−1) allowed for the detection of lines with intensity weaker than 2 × 10−29 cm/molecule. In this contribution, the investigated region was extended down to 5905 cm−1 and additional recordings allowed accessing small spectral sections uncovered in our preceding recordings. A deeper analysis based on the predictions of the effective Hamiltonian model has allowed assigning a total of 3149 transitions and lowering the percentage of lines left unassigned from 51% to 28%. It led to the analysis of 35, 6, 7, and 6 bands for the 14N216O, 15N14N16O, 14N15N16O, and 14N218O isotopologues, respectively. Forty-two of these 54 bands are newly observed, while the rotational analysis of the twelve others is significantly extended and improved. Most of the bands were found unperturbed and their line positions could be reproduced within the experimental uncertainty (about 1 × 10−3 cm−1). The corresponding spectroscopic parameters are reported. Local rovibrational perturbations induced by either intrapolyad or interpolyad couplings were found to affect five hot bands of 14N216O. Their detailed analysis is presented.  相似文献   

7.
The high resolution absorption spectrum of dideuterated water, D216O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13 600-14 020 cm−1 spectral region which is the highest energy region reported so far for this water isotopologue. Because the HD16O absorption is stronger by three orders of magnitude in the region under study, it was necessary to use high deuterium enrichment in order to minimize the HD16O absorption lines overlapping the D216O spectrum. With the high sensitivity achieved (noise equivalent absorption αmin ∼10−9 cm−1), transitions with line strengths on the order of 5 × 10−28 cm molecule−1 could be detected. The spectrum analysis, based on recent variational calculations has provided a set of 177 new rovibrational energy levels belonging to six vibrational states.The most complete set of 53 vibrational energy levels of D216O, including the three newly determined band origins, was constructed from an exhaustive review of the literature data. The fitting of the parameters of the vibrational effective Hamiltonian has allowed to reproduce the whole set of vibrational energies with an rms deviation of 0.055 cm−1. This simple model gave consistent vibrational labels of the D216O states up to 18 000 cm−1. Above 15 000 cm−1, Fermi and Darling-Dennison resonance interaction were found to induce strong vibrational mixings of the wave functions in the normal mode basis, leading to ambiguous vibrational labeling.  相似文献   

8.
We present the third part of the investigation of the high sensitivity absorption spectrum of nitrous oxide by CW-Cavity Ring Down Spectroscopy near 1.5 μm. In the two first contributions (A. Liu, et al., J. Mol. Spectrosc. 244 (2007) 33-47 and A. Liu, et al., J. Mol. Spectrosc. 244 (2007) 48-62) devoted to the 5905-6833 cm−1 region, more than 9000 line positions of five isotopologues (14N216O, 15N14N16O, 14N15N16O, 14N217O and 14N218O), were rovibrationally assigned to a total of 115 bands, most of them being newly detected. The achieved sensitivity (αmin∼3 × 10−10 cm−1) allowed for the detection of lines with intensity weaker than 2 × 10−29 cm/molecule. In this contribution, the investigated region was extended up to 7066 cm−1. The analysis based on the predictions of the effective Hamiltonian model has allowed assigning about 1500 transitions to 17, 1, 2 and 1 bands of the 14N216O, 14N15N16O, 15N14N16O and 14N218O isotopologues, respectively. Eleven of these 21 bands are newly reported, while the observations of the transitions are extended to higher J values for most of the others. The band by band analysis has allowed reproducing the measured line positions within the experimental uncertainty (about 1 × 10−3 cm−1) and determining the corresponding spectroscopic parameters. A detailed analysis of the rovibrational perturbations affecting three bands of 14N216O is presented.  相似文献   

9.
The absorption spectrum of natural water vapour around 1.5 μm has been recorded with a typical sensitivity of 5 × 10−10 cm−1 by using a CW-cavity ring down spectroscopy set up based on fibred DFB lasers. A series of 31 DFB lasers has allowed a full coverage of the 6130.8-6748.5 cm−1 (1.63-1.48 μm) region corresponding to the H transparency band of the atmosphere. The line parameters (wavenumber and intensity) of a total of 5190 lines, including 4247 lines of water vapor, were derived by a one by one fit of the lines to a Voigt profile. Different isotopologues of water (H216O, H218O, H217O, and HD16O) present in natural abundance in the sample contribute to the spectrum. For the main isotopologue, H216O, 2130 lines were measured with line intensities as weak as 10−29 cm/molecule while only 926 lines (including a proportion of 30% inaccurate calculated lines) with a minimum intensity of 3 × 10−27 cm/molecule are provided by the HITRAN and GEISA databases. Our comparison in the whole 5750-7965 cm−1 region, has also evidenced that an error in the process of conversion of the intensity units from cm−2/atm to cm−1/(molecule × cm−2) at 296 K, has led to H216O line intensities values listed in the HITRAN-2000 database, systematically 8 % below the original FTS values. The rovibrational assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge with a subsequent refinement and validation using the Ritz combination principle together with all previously measured water transitions relevant to this study. This procedure allowed determining 172, 139, 71, and 115 new energy levels for the H216O, H218O, H217O, and HD16O isotopologues, respectively. The results are compared with the available databases and discussed in regard of previous investigations by Fourier transform spectroscopy. The spectrum analysis has showed that most of the transitions which cannot be assigned to water are very weak and are due to impurities such as carbon dioxide and ammonia, leaving only about 3% of the observed transitions unassigned. The interest of a detailed knowledge of water absorption for trace detectors developed in the 1.5 μm range is underlined: for instance HDO contributes significantly to the considered spectrum while no HDO line parameters are provided by the HITRAN database.  相似文献   

10.
High-resolution absorption lineshapes of two H2O transitions near 7185.60 and 7154.35 cm−1 have been recorded in a heated static cell as a function of temperature (296-1100 K) and pressure (6-830 Torr) using two distributed-feedback diode lasers. The measured absorption spectra are least squares fit to both Voigt and Galatry profiles. Strong collisional-narrowing effects are observed in the Ar-broadened H2O spectra at near-atmospheric pressure due to the relatively weak collisional broadening induced by Ar-H2O collisions, while collisional narrowing is not significant for pure H2O absorption lineshapes. Line strengths and self-broadening coefficients are inferred from the pure H2O absorption spectra and compared with published data. Temperature dependences of the Ar-induced broadening, narrowing, and shift coefficients are determined using Galatry fits to the absorption data. The measured collisional-narrowing parameters have similar temperature dependence to the collisional-broadening coefficients.  相似文献   

11.
Isik Onal  Sezen Soyer 《Surface science》2006,600(12):2457-2469
Density functional theory (DFT) calculations performed at B3LYP/6-31G∗∗ level are employed to study water and ammonia adsorption and dissociation on (1 0 1) and (0 0 1) TiO2 anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 cluster models. PM3 semiempirical calculations were also conducted both on Ti2O9H10 and Ti9O33H30 clusters in order to assess the effect of cluster size. Following dissociation, the adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated systems, respectively are also considered. It is found that the adsorption energies and geometries of water and ammonia molecules on (1 0 1) and (0 0 1) anatase cluster models depend on surface relaxation. The vibration frequency values are also calculated for the optimized geometries. The adsorption energies and vibration frequency values computed are compared with the available theoretical and experimental literature.  相似文献   

12.
Absorption spectra of HDO/D2O mixtures recorded in the 5600-8800 cm−1 region with a total pressure of water from 13 up to 18 hPa and an absorption path length of 600 m have been analyzed in order to obtain new spectroscopic data for HD18O and D218O. In spite of the low natural 18O concentration (about 2×10−3 with respect to the 16O one), about 1100 transitions belonging to HD18O and more than 280 transitions belonging to D218O have been assigned. Most of the D218O transitions belong to the ν1+ν2+ν3 and 2ν1+ν3 bands. Sets of energy levels for seven vibrational states of D218O and four states of HD18O are reported for the first time. The comparison of the experimental data with the calculated values based on Partridge-Schwenke global variational calculations is discussed.  相似文献   

13.
Previously we obtained self-broadened halfwidth and self-induced shift coefficients at room temperature for 15 near infrared CO2 bands between 4750 and 7000 cm−1 [R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc., 239 (2006) 243-271]. The present study expands our work on the near infrared line parameters of CO2 to include air broadening coefficients. Here we report nearly 400 air-broadened half width and air-induced pressure shift coefficients spanning 11 different CO2 vibrational bands in the 4750-7000 cm−1 region. Retrievals have been performed using Voigt line profiles over three distinct spectral intervals: (a) 4750-5200 cm−1, covering the 20011 ← 00001, 20012 ← 00001, and 20013 ← 00001 Fermi Triad and three associated hot bands 21111 ← 01101, 21112 ← 01101, 21113 ← 01101; (b) 6100-7000 cm−1, covering the 30011 ← 00001, 30012 ← 00001, 30013 ← 00001 and 30014 ← 00001 Fermi Tetrad; (c) near 6950 cm−1 for the 00031 ← 00001 overtone band. The air-broadened halfwidth and air-induced pressure shift coefficients have been modeled with empirical expressions and compared to other measurements available in the literature.  相似文献   

14.
High-resolution Fourier transform infrared spectrum of H2S was recorded and analyzed in the region of the polyad. More than 450 transitions were assigned to the 3ν1 + ν2 and 2ν1 + ν2 + ν3 bands with the maximum values of quantum numbers J and Ka equal to 14, 7, and 14, 9 for these two bands, respectively. The theoretical analysis was fulfilled with the Hamiltonian which takes into account strong resonance interactions among the studied vibrational states (3 1 0), (2 1 1), and also “dark” states (0 3 2) and (2 3 0). The rms deviation is 0.0019 cm−1. The intensity borrowing effect in the doublets in the P-branch transitions of the 3ν1 + ν2 and 2ν1 + ν2 + ν3 bands is observed and discussed.  相似文献   

15.
Line position, intensity and line shape parameters (Lorentz widths, pressure shifts, line mixing, speed dependence) are reported for transitions of the 30013 ← 00001 band of 16O12C16O (ν0 = 6227.9 cm−1). The results are determined from 26 high-resolution, high signal-to-noise ratio spectra recorded at room temperature with the McMath-Pierce Fourier transform spectrometer. To minimize the systematic errors of the retrieved parameters, we constrained the multispectrum nonlinear least squares retrieval technique to use quantum mechanical expressions for the rovibrational energies and intensities rather than retrieving the individual positions and intensities line by line. Self- and air-broadened Lorentz width and pressure-induced shift, speed dependence and line mixing (off-diagonal relaxation matrix elements) coefficients were adjusted individually. Errors were further reduced by simultaneously fitting the interfering absorptions from the weak 30012 ← 00001 band of 16O13C16O as well as the weak hot bands 31113 ← 01101, 32213 ← 02201, 40014 ← 10002 and 40013 ← 10001 of 16O12C16O in this spectral window. This study complements our previous work on line mixing and speed dependence in the 30012 ← 00001 band (ν0 = 6347.8 cm−1) [V.M. Devi, D.C. Benner, L.R. Brown, C.E. Miller, R.A. Toth, J. Mol. Spectrosc. 242 (2007) 90-117] and provides key data needed to improve atmospheric remote sensing of CO2.  相似文献   

16.
Infrared reflection absorption spectroscopy that used buried metal layer substrates (BML-IRRAS) and density functional cluster calculations were employed to investigate the water related oxidation reactions of 2H + H2O/Si(1 0 0)-(2 × 1), 2D + H2O/Si(1 0 0)-(2 × 1), and H2O + H/Si(1 0 0)-(2 × 1). In addition to the oxygen inserted coupled monohydrides, which were previously reported in the former reaction system, we report several other oxidized Si hydride species in our BML-IRRAS experiments. Three new pairs of vibrational bands are identified between 900 and 1000 cm−1. These vibrational frequencies were calculated using Si9 and Si10 cluster models that included all possible structures from zero to five oxygen insertions into the top layer silicon atoms using a B3LYP gradient corrected density functional method with a polarized 6-31G** basis set for all atoms. The three pairs of vibrational modes are assigned to the scissoring modes of adjacent and isolated SiH2 with zero, one, and two oxygen atoms inserted into the Si back bonds. All the other newly observed vibrational peaks related to Si oxidation are also assigned in this study. The Si-O stretching bands observed in the reaction 2D + H2O/Si(1 0 0)-(2 × 1) show an isotope effect, which suggests that in the system 2H + H2O/Si(1 0 0)-(2 × 1) also, hydrogen atom tunneling plays an important role for the insertion of oxygen atoms into Si back bonds that form oxidized adjacent dihydrides.  相似文献   

17.
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption.  相似文献   

18.
The absorption spectrum of the natural sample of nitrous oxide has been recorded at Doppler limited resolution with a Fourier-transform spectrometer in the spectral range 5000-10 000 cm−1. Ten cold bands (8Σ − Σ and 2Σ − Π), thirteen hot bands (11Π − Π, Σ − Σ, and Δ − Δ) of 14N216O and the 3ν3 band of 14N15N16O have been newly detected. The uncertainty of the line position determination is estimated to be about 0.005 cm−1 for unblended lines. The assignment of the spectrum has been done with the help of the prediction performed within the framework of the polyad model of effective Hamiltonian. The spectroscopic parameters Gv, Bv, Dv, Hv, and qv have been determined for all newly detected bands. The line intensities of 13 weak bands have been measured. The uncertainty of the obtained line intensity values varies from 7 to 13%.  相似文献   

19.
Polarization spectroscopy in the mid-infrared (IRPS) has been applied to the detection of acetylene molecules making use of the asymmetric C-H stretching vibration at around 3 μm. The infrared laser pulses were produced through difference frequency generation in a LiNbO3 crystal pumped by a Nd:YAG and dye laser system. By directly probing the ro-vibrational transitions with IRPS, sensitive detection of molecules with otherwise inaccessible electronic states was realized with high temporal and spatial resolution by using a pulsed laser and a cross-beam geometry. Detection sensitivities of 2 × 1013 molecules/cm3 (10 ppm in 70 mbar gas mixture) of C2H2 were achieved using the P(1 1) line of the (0 1 0(1 1)0)-(0 0 0 00 00) band. The dependence of the IRPS signal on the pump laser fluence, acetylene mole fraction, and buffer gas pressure of Ar, N2, H2, and CO2 has been studied experimentally. The investigation demonstrates the quantitative nature of IRPS for sensitive detection of polyatomic IR active molecules. In order to fully demonstrate the technique for combustion applications, nascent acetylene molecules were measured in a low pressure methane/oxygen flame.  相似文献   

20.
Thermally induced phase transitions (20-1000 °C) in the substrates and binary mixtures of CH3COOLi·2H2O(1)-MgHPO4·3H2O(11) have been analysed. Changes taking place on dehydration and thermal dissociation of binary mixtures prepared with percent molar ratios of 90-10% were studied by differential thermal analysis (TG, DTG, DTA), IR-spectroscopy and WAXS.The above-mentioned substrates changed their structure when heated for 1 h at 500 or 1000 °C. CH3COOLi·2H2O(1) (ID: 23-1171) changed the structure at 500 °C to that of Li2CO3 (ID: 22-1141), while at 1000 °C the structure was impossible to analyse as the compound reacted both with porcelain and with platinum (crucible materials). MgHPO4·3H2O(11) (Newberyite, ID: 35-780, 19-762) changed its structure at 500 °C to amorphous phase and at 1000 °C to Mg2P2O7 (ID: 32-626).The following compounds were assayed in the respective binary mixtures heated at 500 °C for 1 h: 70% (1)-30%(11): LiMgPO4 (ID: 18-735), MgO (ID: 4-829); 50%(1)-50%(11): LiMgPO4 (ID: 18-735), Li3PO4 (ID: 25-1030); 30%(1)-70%(11): LiMgPO4 (ID: 32-574); binary mixtures heated at 1000 °C contained the following compounds: 70%(1)-30%(11): LiMgPO4 (ID: 32-574,18-735), Li3PO4 (ID: 15-760,25-1030), MgO (ID: 4-829); 50%(1)-50%(11): LiMgPO4 (ID: 32-574, 18-735), MgO (ID: 4-829); 30%(1)-70%(11): LiMgPO4 (ID: 18-735, 32-574), Mg2P2O7 (ID: 22-1152, 8-38), Li4SiO4 (37-1472).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号