首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report suppression of atomic heating by light scattering due to tight binding in a 3D far-off-resonant optical lattice. We show that rescattered spontaneously emitted photons do not heat trapped atoms when the scattering rate is much less than the trap vibrational frequency.  相似文献   

2.
We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics is well described by the effective Hamiltonian theory.  相似文献   

3.
We report on a matter wave interferometer realized with entangled pairs of trapped 87Rb atoms. Each pair of atoms is confined at a single site of an optical lattice potential. The interferometer is realized by first creating a coherent spin superposition of the two atoms and then tuning the interstate scattering length via a Feshbach resonance. The selective change of the interstate scattering length leads to an entanglement dynamics of the two-particle state that can be detected in a Ramsey interference experiment. This entanglement dynamics is employed for a precision measurement of atomic interaction parameters. Furthermore, the interferometer allows us to separate lattice sites with one or two atoms in a nondestructive way.  相似文献   

4.
We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence.  相似文献   

5.
We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.  相似文献   

6.
We experimentally demonstrate coherent light scattering from an atomic Mott insulator in a two-dimensional lattice. The far-field diffraction pattern of small clouds of a few hundred atoms was imaged while simultaneously laser cooling the atoms with the probe beams. We describe the position of the diffraction peaks and the scaling of the peak parameters by a simple analytic model. In contrast to Bragg scattering, scattering from a single plane yields diffraction peaks for any incidence angle. We demonstrate the feasibility of detecting spin correlations via light scattering by artificially creating a one-dimensional antiferromagnetic order as a density wave and observing the appearance of additional diffraction peaks.  相似文献   

7.
王彦成  邱吴劼  杨宏亮  席丽丽  杨炯  张文清 《物理学报》2018,67(1):16301-016301
对于重要热电材料之一的填充方钴矿材料,其低热导率的成因存在两种观点:1)填充原子的局域振动引起共振散射降低热导率;2)填充原子的引入加强了三声子倒逆过程来降低热导率.本文采用含有限温度效应的第一性原理分子动力学方法模拟了YbFe_4Sb_(12)的动力学过程,并通过温度相关有效势场方法得到了充分包含非线性作用的等效非谐力常数,研究了微扰近似下的声子输运性质.结果显示,在填充原子振动全部参与三声子倒逆散射过程的近似下,相比于纯方钴矿体系,声子寿命大幅地降低,填充原子的振动是热阻的重要来源.但即便如此,理论计算结果与实验的晶格热导率之间仍存在明显偏离.不同填充原子振动之间的较弱关联性质也揭示其明显偏离经典的声子图像,表现为一种强烈的局域特征振动模式,并以此散射其他晶格声子,因而对热阻的贡献也超出了传统三声子的理论框架.通过将填充原子Yb振动模式的寿命进行共振散射形式的修正,可以使晶格热导率与实验结果符合较好.以上结果表明,YbFe_4Sb_(12)的低晶格热导率是由声子间相互作用以及具有局域振动特征的共振散射两方面因素导致.  相似文献   

8.
The concepts of complex electron atomic scattering factors and principles for evaluating these factors are discussed and their applicability is examined. Numerical procedures and routines for calculating these factors are described, and for 98 neutron atoms and 109 ions the real part of the electron atomic scattering factors were parameterized using 10 and eight parameters, respectively. Procedures for constructing two and three dimensional scattering potentials using the complex atomic scattering factors are illustrated with examples; effects of thermal vibrations of the crystal lattice are discussed.  相似文献   

9.
The features of the angular distributions of accelerated neutral atoms at grazing angles of incidence on the Al(001) surface are studied using the mathematical modeling method. The interaction of accelerated atoms with crystal-lattice atoms and the electronic properties and atomic structure of the Al(001) surface are calculated using the electron-density-functional method. The angular distributions of scattered atoms are modeled by taking into account their interaction with several atomic layers in the crystal lattice and atomic displacements during thermal oscillations. The influence of crystal surface-layer relaxation on rainbow scattering, i.e., the difference between the distances of planes on the surface and in the volume, is established. The possibilities of using the effect of rainbow scattering to study the structural features of a crystal surface are discussed.  相似文献   

10.
When N driven atoms emit in phase into a high-Q cavity mode, the intracavity field generated by collective scattering interferes destructively with the pump driving the atoms. Hence atomic fluorescence is suppressed and cavity loss becomes the dominant decay channel for the whole ensemble. Microscopically, 3D light-intensity minima are formed in the vicinity of the atoms that prevent atomic excitation and form a regular lattice. The effect gets more pronounced for large atom numbers, when the sum of the atomic decay rates exceeds the rate of cavity losses and one would expect the opposite behavior. These results provide new insight into recent experiments on collective atomic dynamics in cavities.  相似文献   

11.
We study the phase coherence property of Bose-Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field. The lattice depth is determined using a method of Kapitza-Dirac scattering between a condensate and a short pulse lattice potential. Condensates are then adiabatically loaded into the optical lattice. The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice. For weak lattice, nearly all of the atoms stay in a superfluid state. However, as the lattice depth is increased, the phase coherence of the whole condensate sample is gradually lost, which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states.  相似文献   

12.
We consider a resonantly interacting boson-fermion mixture of 40K and 87Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for 40K and 87Rb atoms, and 40K-87Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.  相似文献   

13.
The two-beam approximation of dynamic electron diffraction in crystals is deduced from successive scattering by two-dimensional gratings. The scattering-amplitude caused by the single grating (phase-grating) is determined by the atomic scattering factors of the single atoms. The use of real atomic scattering factors leads here to the same solutions as the twobeam theory, using the Schroedinger-equation. Anomalous absorptions effects are described in the usual theory by introducing a complex lattice potential into the Schroedinger-equation, taking into account inelastic scattering. A more exact calculation of only elastic scattering by a single atom results in complex atomic scattering factors. Using the complex atomic scattering factors one can describe the anomalous absorption, if recursion-formulae for successive scattering are applied. On the other hand, the transformation to differential equations leads to results, which are not in agreement with experiments. The influence of inelastic scattering for the anomalous absorption can be neglected compared with the complex atomic scattering factors.  相似文献   

14.
A.D. Crowell 《Surface science》1981,111(1):L667-L670
Recent experimental studies of the scattering of He atomic beams by graphite have shown that the electronic anisotropy of the C atoms must be taken into account in calculating the interaction between a graphite lattice and an external He atom. The empirical compressibility of graphite is used to determine an appropriate value for the polarizability of graphite C atoms parallel to the graphite c axis, a parameter needed to calculate He-graphite interaction potentials.  相似文献   

15.
The impact of excited cesium atoms on sapphire and glass surfaces have been experimentally studied. It is established that the probability of electron excitation quenching upon impact of an atom on the dielectric surface is close to unity. The velocity distribution of unexcited atoms upon scattering from the surface has been determined using the time-of-flight technique. The kinetic energies of most of these atoms are several tens of times greater than the energy of thermal motion of the excited atoms impinging on the surface. Conversion of the internal energy of atoms into their kinetic energy is explained in terms of nonradiative electron transitions with simultaneous excitation of lattice vibrations in the dielectric crystal. This mechanism of atomic excitation quenching near the dielectric surface explains the significant difference between the energies of atoms upon superelastic scattering and upon photodesorption from an adsorbed state.  相似文献   

16.
We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechanical membrane. The atoms are trapped in an optical lattice, which is formed by retroreflection of a laser beam from the membrane surface. In this setup, the lattice laser light mediates an optomechanical coupling between membrane vibrations and atomic center-of-mass motion. We observe both the effect of the membrane vibrations onto the atoms as well as the backaction of the atomic motion onto the membrane. By coupling the membrane to laser-cooled atoms, we engineer the dissipation rate of the membrane. Our observations agree quantitatively with a simple model.  相似文献   

17.
本文发展了Schommers的时间观点,定义了时间,尤其是表征量子系统光散射的散射时间和共振散射时间。通过散射时间本征态的假定实现了散射时间的量子化,得到了量子化的共振散射时间。对原子的弹性光散射和Raman散射的成功应用推出了原子和原子的价电子逐级电离所形成的离子的所有原子能级的普适近似公式。  相似文献   

18.
Superradiant light scattering from noncondensed, thermal atomic vapors was experimentally studied. We found that superradiant gain is independent of quantum degeneracy and determined only by the shape of the atomic cloud and a contained number of atoms. Superradiant pump-probe spectroscopy was also developed to measure the atomic correlation function, revealing the Doppler-width-limited coherence time of the thermal gas and sudden buildup of long-lived coherence below the transition temperature.  相似文献   

19.
We study the quantum dynamics of N coherently driven two-level atoms coupled to an optical resonator. In the strong coupling regime the cavity field generated by atomic scattering interferes destructively with the pump on the atoms. This suppresses atomic excitation and even for strong driving fields prevents atomic saturation, while the stationary intracavity field amplitude is almost independent of the atom number. The magnitude of the interference effect depends on the detuning between laser and cavity field and on the relative atomic positions and is strongest for a wavelength spaced lattice of atoms placed at the antinodes of the cavity mode. In this case three dimensional intensity minima are created in the vicinity of each atom. In this regime spontaneous emission is suppressed and the dominant loss channel is cavity decay. Even for a cavity linewidth larger than the atomic natural width, one regains strong interference through the cooperative action of a sufficiently large number of atoms. These results give a new key to understand recent experiments on collective cavity cooling and may allow to implement fast tailored atom-atom interactions as well as nonperturbative particle detection with very small energy transfer.Received: 18 May 2004, Published online: 19 October 2004PACS: 32.80.Pj Optical cooling of atoms; trapping - 42.50.Pq Cavity quantum electrodynamics; micromasers - 42.50.Fx Cooperative phenomena in quantum optical systems  相似文献   

20.
We report on theoretical and experimental studies of nuclear inelastic scattering in a molecular crystal, whose atoms experience both molecular and lattice vibrations. In this case scattering proceeds as combined nuclear-molecular resonance inelastic scattering. The lattice vibrations give rise to inelastic scattering around the molecular resonances with an energy dependence identical to that around the nuclear resonance. The incoherent nature of the scattering in the molecular resonances results in a proper balance of elastic and inelastic components, which has important implications for studies of heterogeneous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号