首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaporation of aqueous ammonia solutions of K7[Mo4Te4(CN)12]·12H2O or K6[W4Te4(CN)12]·5H2O, copper(ii) chloride, and ethylenediamine afforded the isostructural heterometallic complexes [{Cu(en)2}2{Cu(en)2(NH3)}{M4Te4(CN)12}]·5H2O (M = Mo or W), which were characterized by IR and ESR spectroscopy and X-ray diffraction analysis.  相似文献   

2.
Three new coordination compounds [{Zn(H2O)2} {Zn(H2O)4} Re4Te4(CN)12] (1), [Zn(en)2(NH3)2][{Zn(en)(NH3)2} Re4Te4(CN)12]·H2O (2), and [{Zn2(dien)3} Re4Te4(CN)12]· ·6H2O (3) (dien is diethylenetriamine) were prepared by reactions of aqueous solutions of the tetrahedral cluster rhenium tellurocyanide complex K4[Re4Te4(CN)12]· 5H2O with zinc dichloride in the presence of ammonia, ethylenediamine, and diethylenetriamine, respectively. Complex 1 has a three-dimensional structure with two types of the Zn atoms; complex 2 is ionic with the polymeric chain anion; complex 3 has a molecular structure. The structures of complexes 1–3 were determined by single-crystal X-ray diffraction analysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 718–721, April, 2006.  相似文献   

3.
《Polyhedron》1999,18(26):3527-3531
The redox reaction between [Pt(NH3)4]2+ and [W(CN)8]3− in the presence of Cl anions in aqueous solution affords single crystals of [PtII(NH3)4]2[WIV(CN)8] and [PtIV(NH3)4Cl2]Cl2. Trapped cyano ligands of [W(CN)8]4− rectangular antiprisms of D2 point symmetry between parallel Pt(II) square planes show that the inner-sphere redox pathway is prohibited. The presence of Cl counterions enables the formation of [Pt(NH3)4Cl2]Cl2 as the product of the rare outer-sphere pathway of the oxidation of Pt(II) by [W(CN)8]3−.  相似文献   

4.
The compounds (NMe4)5[As2Mo8V4AsO40] · 3 H2O 2a , (NH4)21[H3Mo57V6(NO)6O183(H2O)18] · 65 H2O 3a , (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18] · 14 H2O 3b and (NH4)12[Mo36(NO)4O108(H2O)16] · 33 H2O 4a ( 3a and 4a were not correctly reported in the literature regarding to their composition, structures and the oxidation states of the metal centres) which contain large isolated anionic species, have been prepared (among them 3a, 3b , and 4a in rather high yield) and characterized by complete crystal structure analysis as well as IR/Raman, UV/VIS/NIR, ESR spectroscopy and magnetic susceptibility measurements, redox titrations, bond valence sum calculations, elemental analyses and thermogravimetric studies. Perspectives for polyoxometalate chemistry referring to the synthesis of “extremely” large nanoscaled species are discussed, together with the occurrence of a large transferable {Mo17} building block in the compounds 3a, 3b and 4a which also exists in the corresponding iron compound Na3(NH4)12[H15Mo57Fe6(NO)6O183(H2O)18] · 76 H2O 7a .  相似文献   

5.
The preparation, identification and some properties of three new clathrate compounds Cd(mea)[Pd(CN)4] · 2C6H6, Cd(mea)2[Pd(CN)4] · C4H4S and Cd(mea)2[Pd(CN)4] · C4H4NH (mea = HO-CH2-CH2-NH2) are described.
  相似文献   

6.
The reactions of the rhenium chalcocyanide cluster salts K4[Re4Q4(CN)12]·6H2O (Q = S or Se) with Cu2+ cations coordinated by the bidentate ligand 2,2′-bipyridyl (bipy) produced two new cluster compounds, [Cu(NH3)(bipy)2]2[Re4S4(CN)12]·bipy·3.25H2O (1) and [{Cu(bipy)2}2Re4Se4(CN)12]·bipy·8.5H2O (2). The structures of these complexes were solved by X-ray diffraction. Compound 1 is ionic. Compound 2 is molecular. In the structures of both compounds, there are staking interactions between the {Cu(bipy)2}2+ cationic moieties and the solvate 2,2′-bipyridyl molecules. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1875–1878, November, 2006.  相似文献   

7.
Structurally Chemical Investigation of Monoammin Copper (I) Complexes : [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 The preparation and the properties of [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 are described. I.R. and Raman spectra have been recorded and assigned. According to X-ray powder diagrams, [CuNH3]2[Pt(CN)6] crystallizes in the trigonal space group D–P3 ml, a = 7.771, c = 5.988 Å, Z = 1. According to the spectroscopic and crystallographic data, it is concluded that the CuI ion is coordinated with one NH3 group and with the N atoms of the cyanometallate anions. The coordination number of the Cu+ is 4 in [CuNH3]2[Pt(CN)6] and 3 in [CuNH3]2[Pt(CN)4]. In the Cu3[Co(CN)6] · 2 NH3 complex two Cu atoms have the coordination number 2, the third Cu atom 4.  相似文献   

8.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

9.
Diffusion of aqueous solutions of K4[Re4Te4(CN)12] and CuCl2 in the opposite direction through silica gel gives rise to the new polymer-like compound 1 . This complex has a layered structure built from the interconnected cubane-like cluster cations [Cu4(μ3-OH)4]4+ and the cluster anions [Re4Te4(CN)12]4− (see picture).  相似文献   

10.
The reaction of the cluster salt K4[Re4Te4(CN)12]·5H2O with NdCl3·6H2O was studied in either an acidic medium (HCl) or in a water solution in the presence of the following organic agents: hexafluoroacetylacetonate, 2,2′-bipyridine or 1,10-phenanthroline (phen). The crystal structures of four new compounds have been solved by single crystal X-ray diffraction analysis: (H)[{Nd(H2O)5}{Re4Te4(CN)12}]·5.5H2O (1) (space group P21/c, framework structure), K2[{Nd(H2O)7}2{Re4Te4(CN)12}2]·8H2O (2) (space group С2/c, isolated structure), K0.5H0.5[{Nd(H2O)5}{Re4Te4(CN)12}]·3H2O (3) (space group Сmcm, layered structure) and (phenH)[{Nd(H2O)2(phen)2}{Re4Te4(CN)12}]·11H2O (4) (space group С2/c, chain structure). 1,10-Phenanthroline was found to have been incorporated into the structure of compound 4, whilst hexafluoroacetylacetonate and 2,2′-bipyridine did not enter the structures of 2 and 3. It was shown that the structures of compounds 2-4 differ dramatically from that found for compound 1, which was obtained in the absence of the organic agents.  相似文献   

11.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   

12.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

13.
A newly synthesized coordination polymer, [(CH3)3NH]2[CuZn(CN)5], was investigated using 13C and 63Cu solid‐state NMR techniques and single‐crystal X‐ray diffractometry. It consists of a three‐dimensional (3D) net composed of tetrahedral CuI and ZnII ions and CN ligands bridging between the two metal ions. (CH3)3NH+ ions are trapped in the inner space of the 3D net. Three coordination sites of each metal ion are used for the formation of the 3D net and the remaining site is occupied by a unidentate CN ligand. The structure of the 3D net is chiral and categorized as srs in the notation of the Reticular Chemistry Structure Resource (RCSR). In water vapor or open air at room temperature under ambient pressure, a powder of [(CH3)3NH]2[CuZn(CN)5] showed a structural transformation to [(CH3)3NH][CuZn(CN)4] · 1.5H2O, which is a known compound with a diamond‐like 3D net of [CuZn(CN)4] composed of tetrahedral CuI and ZnII ions and bridging CN ligands. 63Cu solid‐state NMR spectroscopy revealed that the Cu‐CN‐Zn orientation of the bridging CN ligands was conserved after the structural transformation.  相似文献   

14.
The crystal structures of Co3[Co(CN)6]2, 12 H2O (a, = 10.210 ± 0.005 Å) and Cd3[Co(CN)6]2, 12 H2O (a = 10.590 ± 0.005 Å) have been determined by X-ray powder methods. According to the measured density the unit cell contains 1 1/3 formula units with 4 Co2+ (Cd2+) in 4a, 2 2/3 Co3+ in 4b, 16 C and 16 N in 24e, 8 H2OI near 24e, (96k) and 8 H2OII near 8 c (192 l). Structure factor calculations based on the space group Oh5 - F m 3 m lead to the following final values of the reliability index R: 0.038 (Co3[Co(CN)6]2, 12 H2O) and 0.037 (Cd3[Co(CN)6]2, 12 H2O). The interatomic distances for the cobaltous compound (in parentheses for the cadmium compound) are: Co3+-C: 1.88 Å (1.89); C-N: 1.15 Å (1.17); Co2+-N: 2.08 Å (2.24); Co2+-OI: 2.10 Å (2.27); shortest OI-H-OII-bonds: 2.89 Å (2.82). Co3+ is octahedrally coordinated by six carbon atoms, the divalent metal ion by four nitrogen atoms and two water molecules. The two different metal ions are connected by M2+-N-C-Co3-bonds to a threedimensional network. The infrared and electronic spectra are shown to be in agreement with the results of the structure analyses of these compounds. The observed positions of the OH-stretching vibrations lead to a hydrogenbond-length of 2.8–2.95 Å.  相似文献   

15.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

16.
Crystal structures of Cs4[Re6Te8(CN)6]·2H2O (1) and Ba2[Re6Te8(CN)6]· 12H2O (2) are determined. Crystals 1 are orthorhombic, a = 14,282(1), b = 12.910(1), c = 18.040(1) Å, Vcell = 3326.3(8) Å3, space group Pbcn, Z = 4, dcalc = 5.715 g/cm3, R(F) = 0.0482 for 3193 Fhkl > 4σ(F). Crystals 2 are triclinic, a = 9.671(3), b = 9.697(4), c = 11.039(4) Å, α = 89.86(3), β = 72.34(3), γ = 82.46(3)°, Vcell = 977.2(6) Å3, space group P1, Z = 1, dcalc = 4.733 g/cm3, R(F) = 0.0490 for 3226 Fhkl > 4σ(F). In both structures, the [Re6Te8(CN)6]4? anions form a distorted primitive cubic packing with distances between the centers 9.02-9.63 Å in 1 and 9.70-11.04 Å in 2. The Cs+ cations in 1 lie near the face centers of the cubes formed by the onions. In 2, cation pairs (Ba2+)2 bonded to two solvate water molecules are formed; the pairs lie at the centers of the anion cubes. In structures 1 and 2, there are shortened contacts between the tellurium atoms belonging to the neighboring anions (3.75-4.09 and 3.95-4.22 Å, respectively).  相似文献   

17.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

18.
Bis(tetramethylammonium) dodecahydrododecaborate, [(CH3)4N]2[B12H12], and bis(tetramethylammonium) dodecahydrododecaborate acetonitrile, [(CH3)4N]2[B12H12] · CH3CN, were synthesized and characterized via Infrared, 1H and 11B NMR spectroscopy. [(CH3)4N]2[B12H12] crystallizes isopunctual to the alkali metal dodecaborates. The crystal structure of [(CH3)4N]2[B12H12] · CH3CN was determined from single crystal data and refined in the orthorhombic crystal system (Pcmn, no. 62, a = 898.68(8), b = 1312.85(9) c = 1994.5(1) pm, R(|F| , 4σ) = 5.9%, wR(F2) = 18.3%). Here, the geometry of the dodecaborate anion is that of an almost ideal icosahedron, less distorted than most other dodecaborates known. By low‐temperature Guinier‐Simon diffractometry phase transitions were detected for [(CH3)4N]2[B12H12] and [(CH3)4N]2[B12H12] · CH3CN at –70 and –15 °C, respectively.  相似文献   

19.
In situ Investigation of the Reaction of Ammonium Monomolybdate (NH4)2MoO4 with Ammonia: The Structure of (NH4)2[Mo3O10] The reactivity of both polymorphs of (NH4)2MoO4 with ammonia was investigated in a temperature range between 20 and 180 °C. Time and temperature controlled X‐ray powder diffraction as well as thermogravimetrical and differential thermal analysis were used to investigate this reaction.The formation of (NH4)2[Mo3O10] from (NH4)2MoO4 is reversible in a humid and irreversible in a dry NH3 gas flow. Heating (NH4)2MoO4(mP60) under an atmosphere of humid NH3 at about 170 °C forms (NH4)2[Mo3O10] and succesively cooling yields the (NH4)2MoO4(mS60) polymorph. (NH4)2[Mo3O10] crystallises isostructural to the potassium compound with space group C2/c (No. 15) and lattice constants a = 1398.2(4), b = 804.1(2), b = 921.0(3) pm and β = 98.833(4)°.  相似文献   

20.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号