首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
197Au Mössbauer spectra from Au/TM (TM = Fe, Co, Ni) multilayers consist mainly of two components. One component shows a large hyperfine magnetic field due to the hybridization at the interface between Au and ferromagnetic layers. The other component is nonmagnetic arising from the middle part of the Au layers. From the fractional area of the magnetic components in each spectrum, the Au atoms in 0.4 nm Au layers are perturbed by the Fe and Ni layers, and Co layers perturb 0.3 nm Au layers at the interface.  相似文献   

2.
Pulsed laser photodeposition from amorphous selenium aqueous colloid solutions using ArF laser radiation at a wavelength of λ = 193 nm has been investigated. Nanometer thick layers were obtained on UV transparent silica substrates in contact with the solution for various photodeposition parameters. Amorphous Se layers, 20 nm thick, were obtained typically by 40 laser pulses of 30 ns duration with a fluence of 50 mJ/cm2. Deposition thresholds for depositing 1 nm thick layers were as low as 5 pulses. The deposited nanometer thin surface morphology was analyzed by Evanescent Field Optical Microscopy, Scanning Electron Microscopy and Atomic Force Microscopy. The nanometer thicknesses were evaluated by utilizing the differential evanescent light pattern emanating from the substrates.  相似文献   

3.
Co/Cr/Pd多层膜的磁性和磁光特性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
关键词:  相似文献   

4.
Fe/Mo multilayers which were grown by sputtering, annealed in high vacuum and analyzed by means of Atomic Force Microscopy and Scanning Electron Microscopy. Concentric circle-1ike patterns were observed after annealing. Two-dimensional Ostwald ripening mechanisms in immiscible systems of Fe/Mo may explain the formation of these structures. We simulated pattern formation in a late stage of the phase separation by applying the Thomas-Freundlich thermodynamic relation. Based on a two-dimensional mode1 in the framework of the Lifshitz-Slyozov theory, our modeling has been extended to include the diffusion limitation in a multi-cluster system.  相似文献   

5.
Within the framework of two-dimensional (2D) numerical micromagnetic simulations, the equilibrium magnetization configuration and the high-frequency (0.1–30 GHz) linear response of Co/Fe multilayers have been investigated in detail. Due to the perpendicular anisotropy of Co layers, a stripe domain pattern can develop through the whole multilayer, the characteristics of which depend on the magnitude of the perpendicular anisotropy, the respective thicknesses of Co and Fe layers and the number of Co/Fe bilayers in the stack. One of the most striking features associated with the layering effect is the ripening aspect of the static magnetization configuration across the multilayers which induces complicated dynamic susceptibility spectra including surface modes and volume modes strongly confined within the inner Fe layers. The effect of the cubic magnetocrystalline anisotropy of Fe layers and the influence of a nonuniform perpendicular magnetic anisotropy within the Co layers on the static and dynamic magnetic properties of Co/Fe multilayers are then analyzed quantitatively.  相似文献   

6.
[NiFeCo(3 nm)/Cu(2 nm)] multilayers having in-plane uniaxial magnetic anisotropy were prepared by using a carousel type sputtering apparatus. The MR (magnetoresistance) ratio was about 8% and the MR curve along the easy axis showed a sharp split hysteresis with a very small transient field, ΔH ∼ 3 Oe, though the switching is irreversible. The experimental results are discussed by using magnetic phase diagrams calculated by Dieny et al. (1990) and Folkerts (1991).  相似文献   

7.
Cr/Sn and Fe/Cr/Sn/Cr multilayers, where monatomic Sn layers are embedded in Cr layers and Fe/Cr multilayers respectively, were prepared by means of ultrahigh-vacuum deposition technique, and the magnetic hyperfine field induced at the 119Sn nuclear sites was examined using conversion electron Mössbauer spectroscopy. The magnetic structures of the Cr layers are inferred from the size and direction of the magnetic hyperfine field transferred at the Sn sites.  相似文献   

8.
Many useful properties of magnetic multilayers depend on the coupling between the ferromagnetic layers. The coupling often oscillates with the thickness of non-magnetic spacer layers: it is ferro- or antiferromagnetic or even non-collinear near a critical thickness. We investigated the magnetron-sputtered Fe/FeSi multilayers with spacer thickness around 1.7 nm by means of Conversion Electron Mössbauer Spectroscopy with oblique incidence of the γ beam in order to gain information on the orientation of the local magnetic moments in the multilayer plane. The results show that the local moments make an angle of 45°–50° with the direction of the remanent magnetization. This is consistent with strong biquadratic coupling which in turn is expected at this spacer thickness from our magnetic measurements. An analysis of the distribution ofB hf corresponding to different numbers of n.n. Si atoms in the bcc Fe structure points to weak diffusion of Si through the Fe/FeSi interface characterized by a diffusion length of about twice the substrate roughness.  相似文献   

9.
Exchange bias and spin valve structures with Fe as ferromagnetic layers selectively enriched in 57Fe and Ir–Mn of different compositions as antiferromagnetic pinning layers have been prepared by r.f. sputtering. Conversion Electron Mössbauer Spectroscopy and Magneto Optic Kerr Effect have shown that the local structure and interactions in the whole ferromagnetic layers, with direct influence on their magnetic reversal processes, depend on growing order of the layers and composition of the AF layer. Interfacial atomic diffusion is the main reason of perturbing the local structure of the ferromagnet. Mössbauer Spectroscopy is a powerfool tool which allows a detailed analysis of local configurations, in order to optimize the magnetic and giant magnetoresistive parameters of such multilayers of important technological applications.  相似文献   

10.
We report and discuss experimental data on the thermoelectric power of magnetic multilayers. Measurements of the thermoelectric power of Fe/Cr, Co/Cu and Fe/Cu multilayers have been carried out in the temperature range 4K < T < 150 K magnetic fields perpendicular to the layers. All specimens were found to exhibit pronounced magnetothermoelectric power (MTEP) effects correlating with their giant negative magnetoresistance. The main difference between the MTEP and the magnetoresistance is in their temperature dependence. Whereas the magnetoresistance is a decreasing function of temperature, the MTEP, at least in Co/Cu and Fe/Cu multilayers, is very small at low temperature and increases rapidly above 30–40 K. We ascribe this high temperature part of the MTEP to spin-dependent electron-magnon scattering and we propose a theoretical model.  相似文献   

11.
The layer resolved magnetic moments and magnetic anisotropy energy of Fe/Co superlattices and multilayers with bcc (0 0 1) and (1 1 0) orientations obtained from first principles simulations are reported here. The magnetic moment of Fe atoms are found to depend on the geometry, coordination number and proximity to Co atoms, whereas that of Co remains almost constant in the superlattices and multilayers. Mixing of atoms at the interface resulted in enhanced Fe magnetic moment while that of Co is unaffected. The magnetic anisotropy energy in superlattices and multilayers are found to be larger than the corresponding values of bulk counterparts. Calculated easy axis of magnetization is in the plane for all superlattice compositions considered in the study, while that in multilayers, changes with crystalline orientation and thickness of Co layers.  相似文献   

12.
Al/Al2O3 multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al2O3 films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al2O3 multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.  相似文献   

13.
Magnetic multilayers of 57Fe with nominal thickness, T nom, between 0.4 and 1.0 nm separated by 3.0 nm Al spacer layers were prepared by alternate deposition of the constituents in high vacuum. The samples were investigated at 4.2 K in external magnetic field. A fraction of Fe atoms corresponding to about 0.3 nm equivalent Fe-thickness was found to mix into the Al spacer. The extremely strong magnetic anisotropy observed for T nom < 0.8 nm is attributed to Fe layers of approximately two atomic planes thick. The anisotropy decreases considerably after the building up of the third Fe atomic layer starts at T nom = 0.8 nm, but full saturation was not achieved even for T nom = 1 nm and 3 T magnetic field applied perpendicularly to the sample plane.  相似文献   

14.
Hyperfine fields at Fe and Mo layers in polyimide/Fe(10 nm)/[Mo(1.1 nm)/Fe(2.0 nm)]120 and [Mo(1.3 nm) /Fe(2.0 nm)]120 multilayers prepared by the electron-beam evaporation technique were measured at room-temperature by Mössbauer spectroscopy and perturbed-angular-correlation spectroscopy. The hyperfine fields in the Fe layers do not show a clear dependence on the Mo layer thickness. On the other hand, the hyperfine fields in the Mo layers show different magnetic structures in these samples. The difference suggests a variation of electron spin polarization in the Mo layers.  相似文献   

15.
The structural and magnetic properties of La/Fe multilayers were investigated by X-ray diffraction, RHEED, magnetometry and57Fe Mössbauer spectroscopy. Comparison is made with previous results obtained for Ce/Fe multilayers. Remarkably sharp interfaces are found, with roughness between 2 and 2.5 Å. The magnetic interface in the Fe sublayers resulting from the distribution of magnetic hyperfine fields distinctly exceeds the extension of the structural interface and points to a magnetic proximity effect. This is discussed in relation to a strong 3d-5d hybridization recently found in measurements of magnetic circular X-ray dichroism. Both the structural and magnetic La/Fe interface is less extended than the interface in Ce/Fe multilayers. Below a thickness of about 25 Å, the individual Fe layers grow in an amorphous structure on the La layers. In this case, Curie temperatures are below 200 K and the Fe-layer saturation magnetization is reduced up to 50%, and there is evidence of a non-collinear spin structure. It is argued that this mainly reflects the properties of pure amorphous Fe.  相似文献   

16.
Magnetic anisotropy between in-plane and out of plane magnetic alignments is studied in a variety of multilayer systems using Mössbauer spectrosopy to observe the (Fe) magnetic orientation. The surface anisotropy in Fe/Au (1 1 1) multilayers is measured as K s = 0.9 × 10?3 Jm?2. In Fe/Ni multilayers the dependence of magnetic orientation on external field applied normal to the layers enables volume and interface anisotropies K v = (?5 ± 1) × 104 Jm?3 and K s = (?0.6 ± 0.4)× 10?3 Jm?2 to be evaluated. In similar applied field experiments coherent rotation of the magnetic Fe and NiFe layers in Fe/Cu/NiFe/Cu multilayers was observed for intervening Cu layer thickness x = 5 Å but independent rotation for x = 50 Å. Out of plane magnetic components are observed for DyFe2, YFe2 thin films and DyFe2/YFe2 multilayers. In fields of up to 0.25 T applied inplane only the moments of the YFe2 film showed significant rotation.  相似文献   

17.
研究了用射频磁控溅射方法制备的[Co(1.5nm)/V(dV)]20(0.5nm≤dV≤4nm)多层膜的结构和磁性.用X射线衍射、透射电子显微镜、高分辨率透射电子显微镜等手段对其结构的分析,表明它们层状周期结构良好,沿膜的生长方向具有fcc Co(111)和bcc V(110)织构,且是由小的柱状晶粒构成的多晶薄膜.界面一定程度的合金化,使其成为成分调制周期结构,也是它们的一个结构特征.由其铁磁共振谱计算得到较小的g因子和4πMe 关键词:  相似文献   

18.
Conversion Electron Mössbauer Spectroscopy (CEMS) was employed in order to study the mixing induced by swift Au and Ag ions at the Fe/Si interface in the Fe/Fe57/Si system. An increase in the amount of mixing with ion fluence and electronic energy loss (S e) has been observed. Atomic Force Microscopy (AFM) results provided indirect evidence to support the above observations.  相似文献   

19.
Using a semi-classical approach, Hood, Falicov and Penn have studied the effects of interfacial roughness on the magnetoresistance (MR) of iron based trilayers (Fe/Cr/Fe and Fe/Cu/Fe). We extend their theory to magnetic metallic multilayers composed of N bilayers ferromagnetic-normal metal. The in plane MR of Co/Cu multilayers is calculated for correlated quasiperiodic interfaces. The averaged effects due to impurities, interdiffusion, band structure, etc. are included in a simple way using two phenomenological parameters S and S for two directions of spin. MR variation with S, S and relaxation time is reported. We analyse also recent experimental data giving the influence of number of bilayers on the MR of Co/Cu multilayers for different temperatures.  相似文献   

20.
The selective removal and patterning of a typical pseudo-spin-valve structure, consisting of a Co(20 nm)/ Cu(6 nm)/Co(3 nm) trilayer, by femtosecond laser has been examined in terms of irradiation parameters and layer structure. Ablation thresholds of the individual Co and Cu thin films and the SiO2/Si substrate have been measured for single-shot irradiation with a 200 femtosecond (fs) laser pulses of a Ti:sapphire laser operating at 775 nm. Ablation of the entire trilayer structure was characterized by a sequential removal of the layers at a threshold level of fluence of 0.28 J/cm2. Atomic Force Microscopy, optical microscopy, profilometry and Sputtered Neutral Mass Spectroscopy were employed to characterize the laser-induced single-shot laser selective removal and patterned areas. As a result, two phenomena were found to characterize the laser process: (i) selective removal of the Co and Cu layer due to the change of the laser fluence and (ii) regular pillars’ area of Co/Cu/Co could be achieved in a regular manner with the lowest pillar width size of 1.5 μm. Ablation through the layers was accompanied by the formation of bulges at the edges of the pillars, which was the biggest inconvenience in lowering the pillar size through the femtosecond laser process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号