首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A chip-type thin-layer radial flow cell was developed as an amperometric detector for capillary electrophoresis. We fabricated a carbon film-based interdigitated ring-shaped array (IDRA) microelectrode with a 2 microm bandwidth and an almost 1 microm gap on a glass plate and used it as a working electrode. A fused-silica capillary was arranged above the IDRA electrode using a guide hole drilled through the acryl plate that formed the flow cell lid. A flow channel for use in connecting the outlet capillary was also fabricated in the acryl plate. We characterized the analytical performance of the IDRA electrode in the microchip flow cell in terms of linear concentration range, sensitivity and concentration detection limit. We achieved a collection efficiency and catechol redox cycle at the IDRA microelectrode of 65% and 1.71, respectively, and thus a high sensitivity and low detection limit of 392.9 pA/microM and 15 nM for dopamine hydrochloride. We examined the reproducibility of the detector and found that the run-to-run and detector-to-detector relative standard deviations were both less than 10%.  相似文献   

2.
We report determination of the apparent Michaelis constant of glucose oxidase (GOx) immobilized on a microelectrode with respect to oxygen. We used a GOx‐modified microelectrode as a probe for scanning electrochemical microscopy. We detected hydrogen peroxide generated by the enzyme reaction at the microelectrode under controlling the oxygen concentration using water electrolysis at an interdigitated array (IDA) electrode. The response depends on the oxygen concentration, which is regulated by the microelectrode position and the potential applied to the IDA electrode. We estimated the apparent Michaelis constant with respect to oxygen in this experimental condition to be about 0.28 mM.  相似文献   

3.
An interdigitated microelectrode array (IDA) was applied to the determination of formaldehyde released from textiles produced in industry. The proposed method is based on formaldehyde reaction with hypobromite which is formed in weakly basic media by control current electrooxidation of bromide on the generator segment of the IDA array. The unreacted hypobromite diffuses through the gap between individually polarisable IDA segments and it is amperometrically detected on the collector segment of the IDA. The efficiency of this nonconvective transfer process in the absence of formaldehyde was substantially higher (78%) in comparison with that when using the rotating ring disc electrode. The influence of the added formaldehyde on the transfer process can be utilised to develop a simple and sensitive analytical procedure for formaldehyde detection with a detection limit of 4×10−6 mol dm−3.  相似文献   

4.
A 3D dendritic nanostructure of silver‐array (DSA) was prepared via electrodeposition on an interdigitated array (IDA) microelectrode. For preparation of this nanostructure, the optimal parameters such as deposition potential, deposition time, the electrode bandwidth and gap size were systematically investigated. It was found that the edge effect of the IDA microelectrode is a key factor for controlling the 3D dendritic growth of silver. Furthermore, the formation of the 3D dendritic morphology was discussed from the aspect of electrochemical nucleation theory and nonequilibrium growth dynamics to give a deep understanding of its growth mechanism. For its potential practical application, we showed that the as‐prepared 3D DSA nanomaterial exhibited high electrocatalytic reduction ability to nitrate in neutral solution and excellent performance for nitrate determination. An amperometric nitrate microsensor based on the 3D DSA was obtained.  相似文献   

5.
This paper describes the numerical simulation of convective diffusion at an interdigitated electrode array, consisting of multiple pairs of microelectrodes held at alternating applied potentials on one wall of a flow channel. The downstream microelectrode of each pair detects species generated at the upstream microelectrode. Concentration profiles in the channel, amperometric response, and signal-to-noise ratios for the detector electrodes are calculated. The simple backward implicit finite difference (BIFD) simulation approach is applicable for a wide range of channel conditions. The upper number of electrode pairs treatable is limited only by computational time. The agreement of the simulation with previous results for a single pair of electrodes under comparable conditions is very good. Substantial improvements in signal-to-noise ratio are predicted for the multi-electrode interdigitated electrode array relative to a single generator-detector pair of equal overall area. Electrode dimensions are discussed for optimum signal/noise ratio. Relative enhancement increases significantly with the number of generator-detector pairs.  相似文献   

6.
A novel technique based on dynamic electrochemistry for the detection of fluoride ions was developed. It is based on its strong complexation with ferric ion. Formed fluoroferric complex is cathodically inactive at the potential of the reduction of free ferric aquo ion. The voltammetric and amperometric response of platinum comb-shaped interdigitated microelectrode array is decreased after fluoride addition. This decrease serves for the quantification of fluoride ions added to the solution. The detection limit of 4.5 × 10−5 mol dm−3 was achieved when one of the segments of interdigitated microelectrode array (IDA) was used as an indicating electrode. The detection limit is about one order of magnitude lower than in the case of conventional platinum macroelectrode. In comparison with ISE electrodes this method is faster and also avoiding large error resulting from the antilogarithmization of ISE Nerstian response. The method was applied to the analysis of toothpaste.  相似文献   

7.
Anion transfer processes at a liquid|liquid interface were studied with an interdigitated gold band array electrode. The organic phase, 4‐(3‐phenylpropyl)‐pyridine containing Co(II)phthalocyanine, was immobilised as random droplets at the electrode surface and then immersed into aqueous electrolyte. Oxidation of Co(II)phthalocyanine at the generator electrode was shown to be associated with anion transfer from the aqueous into the organic phase. The corresponding back reduction at the collector electrode with anion expulsion was delayed by the anion/cation diffusion time across the interelectrode gap. A working curve based on a finite difference numerical simulation model was employed to estimate the apparent diffusion coefficients for anions in the organic phase (PF6?4?3?). Potential applications in ion analysis are discussed.  相似文献   

8.
建立了一种检测白血病细胞表面抗原的细胞酶联免疫电化学分析新方法. 该方法兼有细胞酶联免疫分析抗原、抗体结合的特异性和插指电极阵列酶催化银沉积电化学分析的灵敏性. 在聚苯乙烯微孔板中包被白血病细胞, 先后加入鼠抗人抗体及碱性磷酸酶(ALP)标记的马抗鼠抗体, ALP催化抗坏血酸磷酸酯(AAP)水解成抗坏血酸(AA), AA使银离子还原成银单质并沉积到插指电极阵列表面, 导致插指电极阵列上相邻两个梳齿导通. 通过对电导率的测定, 可实现对细胞表面抗原的高灵敏分析. 此分析方法灵敏度高(可检测出50个左右的HL-60细胞)、特异性好, 且可用于大量样品的分析, 为白血病等肿瘤疾病的早期诊断和免疫分型提供了新技术. 此外, 该方法也可用于细胞表面分子基因工程抗体活性的检测.  相似文献   

9.
基于微带阵列电极的微型葡萄糖传感器研究   总被引:3,自引:0,他引:3  
贾能勤 《电化学》1999,5(2):179-185
用微电子薄膜技术制作了微带阵列电极(MAE),考察了该电极在铁氰化钾,过氧化氢溶液中的电化学行为。在微带阵列电极表面,修饰一层全氟代磺酸酯膜作为基底电极,并把电子介体二茂铁及葡萄糖氧化酶固定在基底电极上制备了微型葡萄糖传感器,探讨了微酶电极对葡萄糖氧化过程的催化作用。该微酶电极响应时间小于10s,检测线性上限为8mmol/L。  相似文献   

10.
超微电极具有常规电极无法比拟的优良的电化学特性.超微电极包括单超微电极和超微电极阵列,单超微电极响应电流较小,一般仪器难以检测;而超微电极阵列除具有单超微电极的特点外,还能增加测量时的响应电流,有利于仪器检测.其中的叉指型超微带电极阵列(IDA)具有产生-收集效应,可提高检测的灵敏度,实现低浓度测量[1~4].将微电子技术和微细加工技术应用于化学和生物传感技术已引起关注,利用微细加工技术可以实现传感器的微型化、集成化和智能化;减少测量使用的样品量;使传感器的敏感元件具有确定的形状和尺寸,提高测量结果的一致性.本文用多…  相似文献   

11.
It has been reported that the introduction of a dielectric barrier between adjacent digits of an interdigitated electrode array can improve the sensitivity of the array as an electrochemical impedance biosensor. Here we present an in‐depth analysis of the impedance in planar interdigitated electrodes and 3‐D interdigitated electrodes (with dielectric barriers). The analysis indicates that the planar geometry not only provides lower impedance but also a higher change impedance as a result of molecular immobilization on the electrode array surface.  相似文献   

12.
《Analytical letters》2012,45(12):1854-1864
Nickel-nickel oxide core-shell nanorod array electrodes were fabricated and a preliminary application for nonenzymatic glucose determination exhibited excellent performance. The nanorod array electrode was synthesized for the first time by an anodic aluminum oxide template assisted electrochemical deposition technique. Facile oxidation was employed to convert nickel at the outer surface of the nanorods to nickel oxide, resulting in a nickel-nickel oxide core-shell nanorod array. The successful conversion was confirmed by x-ray diffraction, cyclic voltammetry, and scanning electron microscopy. The modified electrode possessed high surface area contributed by the nanorods, and efficient mass transfer due to the wide internanorod gap. The electrode provided high sensitivity (127 microampere square centimeter per millimolar), a low limit of detection (~0.5 micromolar), and a long linear dynamic range (up to 14 millimolar) for the determination of glucose. Accurate determination of glucose in human serum was performed. This synthetic strategy may have further application for the preparation of high surface area thin-film electrodes for a variety of applications.  相似文献   

13.
Microdrop analysis of a bead-based immunoassay   总被引:1,自引:0,他引:1  
The progress to electrochemical detection of a microbead-based immunoassay in small volumes has led to a reduced assay time and lower detection limits. Three electrochemical techniques are described for an immunoassay with detection in a microdrop. The techniques are amperometric detection with a rotating disk electrode (RDE), a microelectrode, and an interdigitated array (IDA) electrode. An enzyme-labeled sandwich immunoassay with mouse IgG as the model analyte is used to demonstrate the three techniques. The microbead assay is carried out in a test tube using a magnet to control bead collection. Once the immunocomplex is formed on the microbead, the beads are transferred to a microdrop where the enzyme, either alkaline phosphatase or β-galactosidase, generates 4-aminophenol (PAP). PAP is oxidized at the electrode with an applied potential of +290 mV vs. Ag/AgCl. For all three techniques, the upper limit of the dynamic range was 1000 ng/ml mouse IgG, and the detection limits were: 50 ng/ml for the RDE, 40 ng/ml for the microelectrode, and 26 ng/ml for the IDA electrode.  相似文献   

14.
Pournaghi-Azar MH  Ojani R 《Talanta》1995,42(12):1839-1848
Direct-current cyclic voltammetry is used to investigate the suitability of some ferrocene derivatives such as ferrocenecarboxylic acid, ferroceneacetic acid and ferrocenemethanol as mediators for ascorbic acid oxidation in aqueous solutions with low pH. The ascorbic acid coupled catalytically to three ferrocene derivatives exhibiting homogeneous second-order rate constants k(s), in the range 7.36 x 10(5) - 1.23 x 10(7). The catalytic oxidation peak current was linearly dependent on the ascorbic acid concentration and the linearity range obtained in the presence of ferrocenecarboxilic acid, having the largest second-order rate constant, was 5 x 10(-5) - 1.5 x 10(-3) M. The catalytic effect of the ferrocene derivatives on the electrochemical oxidation of ascorbic acid reduced the oxidation potential of ascorbic acid, resulting in the separation of the overlapping voltammograms of ascorbic acid and dopamine at the glassy carbon electrode in a mixture. This allowed the determination of ascorbic acid in the presence of dopamine. The calibration graph obtained by linear sweep voltammetry for ascorbic acid in the presence of dopamine of fixed concentration is linear in the range 5 x 10(-5) - 1.5 x 10(-3) M. In a similar manner, dopamine is determined in the presence of a high concentration of ascorbic acid, up to 100 times that of dopamine, using ferroceneacetic acid as the most suitable mediator for this purpose.  相似文献   

15.
An enzymatic glucose biosensor with good sensitivity, selectivity and stability employing interdigitated array microelectrode (IDA μ-electrode) was reported. IDA μ-electrode was prepared by photolithography method with its surface immobilized with a layer of glucose oxidase (GOx), entrapped in a three-dimensional network composed of chitosan and tetraethyl orthosilicate sol–gel. The surface of the as-prepared IDA μ-electrode was characterized by scanning electron microscope, electron spectroscopy for chemical analysis, and atomic force microscopy. The experimental parameters for the best glucose sensing performance were optimized according to the loading of GOx, the applied voltages, the concentration of mediator, and the pH for glucose detection. The resulted biosensor exhibited a good response to glucose with a wide linear range from 0 to 35 mM and a low detection limit of 1 mM. The glucose sensor also showed a short response time (within 5 s) that the fast response was reflected by the small Michaelis–Menten constant (KM app) with a value of 2.94 mM. The reported glucose biosensor exhibited good sensitivity (8.74 μA/mM.cm2), reproducibility, and stability.  相似文献   

16.
A microbead based sandwich immunoassay for MS2 bacteriophage was developed using an interdigitated array (IDA) electrode with nanoscale dimensions (220 nm electrode width, 620 nm gap). The IDA was fabricated using an electron beam lithographic lift‐off technique. After an antibody‐assisted capture of MS2 using paramagnetic microbeads, a β‐galactosidase labeled secondary antibody was used to convert p‐aminophenyl‐β‐D ‐galactopyranoside (PAPG) into the redox active p‐aminophenol (PAP). Amperometric detection of PAP with IDA electrodes at +300 and ?200 mV vs. a Ag/AgCl reference electrode was used to measure the result, detecting MS2 concentrations as low as 10 ng/mL.  相似文献   

17.
Zhu X  Choi JW  Ahn CH 《Lab on a chip》2004,4(6):581-587
A dynamic electrochemical transduction mechanism for interdigitated array microelectrodes using an electrical charge pumping method is presented in this paper. In this dynamic transduction mechanism, a charged external capacitor is used as the charge supplier for the electrochemical reaction of the reversible redox species at the interdigitated array electrodes. The charges stored in the capacitor are consumed as the electrochemical reaction current, which causes the capacitor potential decay. The theoretical analysis has shown that the species concentration has a decisive effect on the capacitor potential decay, and therefore the characteristics of the capacitor potential decay are recorded and analyzed to evaluate the concentration of redox species. The new transduction mechanism has the advantages of achieving high sensitivity with small sensor area and simplifying the measurement instrumentation. As a demonstration device, interdigitated array microelectrodes (approximately 0.2 mm(2) electrode surface area) have been fabricated and successfully characterized using p-aminophenol as the redox species under this dynamic mechanism. The detection limit of p-aminophenol was calculated to be approximately 4 x 10(-7) M for the sensor with the new dynamic transduction mechanism.  相似文献   

18.
A microfluidic traveling-wave electrophoresis (TWE) system is reported that uses a locally defined traveling electric field wave within a microfluidic channel to achieve band transport and separation. Low voltages, over a range of -0.5 to +0.5 V, are used to avoid electrolysis and other detrimental redox reactions while the short distance between electrodes, ~25 μm, provides high electric fields of ~200 V cm(-1). It is expected that the low voltage requirements will simplify the future development of smaller portable devices. The TWE device uses four interdigitated electrode arrays: one interdigitated electrode array pair is on the top of the microchannel and the other interdigitated electrode array pair is on the microchannel bottom. The top and bottom substrates are joined by a PDMS spacer that has a nominal height of 15 μm. A pinched injection scheme is used to define a narrow sample band within an injection cross either electrokinetically or hydrodynamically. Separation of two dyes, fluorescein and FLCA, with baseline resolution is achieved in less than 3 min and separation of two proteins, insulin and casein is demonstrated. Investigation of band broadening with fluorescein reveals that sample band widths equivalent to the diffusion limit can be achieved within the microfluidic channel, yielding highly efficient separations. This low level of band broadening can be achieved with capillary electrophoresis, but is not routinely observed in microchannel electrophoresis. Sample enrichment can be achieved very easily with TWE using a device with converging electric field waves controlled by two sets of independently controlled interdigitated electrodes arrays positioned serially along the microchannel. Sample enrichment of 40-fold is achieved without heterogeneous buffer/solvent systems, sorptive, or permselective materials. While there is much room for improvement in device fabrication, and many capabilities are yet to be demonstrated, it is anticipated that the capabilities and performance demonstrated herein will enable new lab-on-a-chip processes and systems.  相似文献   

19.
Zhou R  Wang P  Chang HC 《Electrophoresis》2006,27(7):1376-1385
The high polarizability and dielectrophoretic mobility of single-walled carbon nanotubes (SWNT) are utilized to capture and detect low numbers of bacteria and submicron particles in milliliter-sized samples. Concentrated SWNT solutions are mixed with the sample and a high-frequency (>100 kHz) alternating current (AC) field is applied by a microelectrode array to enhance bulk absorption of the particles (bacteria and nanoparticle substitutes) by the SWNTs via dipole-dipole interaction. The same AC field then drives the SWNT-bacteria aggregates to the microelectrode array by positive-AC dielectrophoresis (DEP), with enhanced and reversed bacteria DEP mobility due to the attached SWNTs. Since the field frequency exceeds the inverse RC time of the electrode double layer, the AC field penetrates deeply into the bulk and across the electrode gap. Consequently, the SWNTs and absorbed bacteria assemble rapidly (<5 min) into conducting linear aggregates between the electrodes. Measured AC impedance spectra by the same trapping electrodes and fields show a detection threshold of 10(4) bacteria/mL with this pathogen trapping and concentration technique.  相似文献   

20.
Chemical modifications on recessed microelectrode array, achieved via electrodeposition techniques are reported here. Silicon-based gold microelectrode arrays of 10 μm microband and microdisc array were selected and functionalised using sol-gel and nanoporous gold (NPG) respectively. For electrochemically assisted self-assembly (EASA) formati6154on of sol-gel, electrode surface was first pre-treated with a self-assembled partial monolayer of mercaptopropyltrimethoxysilane (MPTMS) before transferring it into the sol containing cetyltrimethyl ammonium bromide (CTAB)/tetraethoxysilane (TEOS):MPTMS (90:10) precursors. A cathodic potential is then applied. It was found that larger current densities were required in ensuring successful film deposition when moving from macro- to micro- dimensions. For NPG modification, a chemical etching process called dealloying was employed. NPG of three different thicknesses have been successfully deposited. All the modified and functionalized microelectrode arrays were characterized by both optical (SEM) and electrochemical analysis (cyclic voltammetry and impedance spectroscopy). An increase in surface area and roughness has been observed and such will benefit for future sensing application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号