首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retention behavior of a heterogeneous group of solutes has been examined on seven different stationary phases under isothermal and temperature-programmed conditions. Both ΔHv (enthalpy of solute vaporization from the stationary phase) and ΔSv (entropy of solute vaporization from the stationary phase) values were determined for each solute – stationary phase combination under isothermal conditions. Both program rate and carrier gas velocity were shown to affect solute elution order. Unless these and other experimental factors discussed are controlled, column equivalency studies based on solute elution order have dubious value.  相似文献   

2.
Methyl-capped poly(ethylene oxide) moieties were chemically bonded to silica gel using an amine-reactive modification reagent and evaluated as the stationary phase for ion chromatography. In this work, primary amino groups of an aminopropylsilica packing material were reacted with methyl-PEO12-NHS ester (succinimidyl-{[N-methyl]-dodecaethyleneglycol} ester) in phosphate buffer (pH 7.0) at room temperature. The prepared poly(ethylene oxide)-bonded stationary was evaluated for the separation of inorganic anions, and the retention behavior of inorganic anions on the prepared stationary phase was examined. The elution order of the investigated anions was the same as that observed in common ion chromatography. Both cations and anions of the eluent affected the retention of the analyte anions. Ion exchange was involved for the retention of analyte anions, although the present stationary phase does not possess any discrete ion-exchange sites. The stationary phase was applied to the separation of trace anions contained in tap water and a rock salt.  相似文献   

3.
Summary The normal-phase chromatographic retention behaviour of polyesters on bare silica and on a polymer-based polyamine (PA) column has been studied with a variely of binary mobile phases under isocratic conditions. The dependence of experimental retention data on the degree of polymerization (p) and on mobile phase composition (φ) was characterized by to an approach developed by Jandera et al. The bulky repeating unit and the relatively highly polar end groups of the polyesters both had a large influence on retention behaviour. The two effects in combination explain the molar-mass-independent retention observed experimentally at a particular mobile phase composition for all the mobile phase—stationary phase combinations investigated. These conditions were found to be independent of the type of end group. End group separation on a silica column improves when the polarity of the less polar solvent is increased. End group separation is better on the PA column because of a greater difference between the adsorption energy of the alcohol and acid end groups. Better prediction of retention data on the PA column was achieved by use of an approach which assumes two different types of adsorption site. Results enabled further understanding of retention behaviour in normalphase gradient polymer-elution chromatography (NPGPEC) and explained both the dependence of the order of elution onp and differences between the end-group selectivity of different systems.  相似文献   

4.
The so‐called “fundamental equation for gradient elution” has been used for modeling the retention in gradient elution. In this approach, the instantaneous retention factor (k) is expressed as a function of the change in the modifier content (φ(ts)), ts being the time the solute has spent in the stationary phase. This approach can only be applied at constant flow rate and with gradients where the elution strength depends on the column length following a f(t?l/u) function, u being the linear mobile phase flow rate, and l the distance from the column inlet to the location where the solute is at time t measured from the beginning of the gradient. These limitations can be solved by using the here called “general equation for gradient elution”, where k is expressed as a function of φ(t,l). However, this approach is more complex. In this work, a method that facilitates the integration of the “general equation” is described, which allows an approximate analytical solution with the quadratic retention model, improving the predictions offered by the “linear solvent strength model.” It also offers direct information about the changes in the instantaneous modifier content and retention factor, and gives a meaning to the gradient retention factor.  相似文献   

5.
An efficient, simple, validated, analytical and semi‐preparative HPLC method has been developed for direct enantioresolution of (RS)‐Ketorolac (Ket) using monochloro‐methylated derivatives of cellulose and amylose, i.e. cellulose (tris‐3‐chloro‐4‐methylphenylcarbamate) and amylose (tris‐5‐chloro‐2‐methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)‐Ket under normal and reversed‐phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n‐BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose‐based CSP using EtOH, while using 2‐PrOH (15%) and amylose‐based CSP obtained the highest retention. Under reversed‐phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)‐Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Under the elution of methanol‐based mobile phase, the isocratic resolution of 12 biogenic amines, including 1 aromatic, 2 heterocyclic and 9 aliphatic amines, as the dansylated derivatives has been accomplished in less than 25 minutes on a 15 cm C8‐bonded column. The resolution can not be reproduced on other examined alkyl‐bonded phases (e.g., C4 and C18) under the same chromatographic conditions, or in the reversed‐phase mode. The retention, mainly as a result of hydrophobic interaction between analyte and stationary phase, can be adjusted by varying the percentage of methanol in the mobile phase. Also, incorporating acetic acid as additive to the mobile phase to protonate the analyte and silanol groups that are little shielding on the surface of silica gel reduces the dipole‐dipole interaction, and thus the retention scale, which in turn deteriorates the resolution. Furthermore, the elution reversal is plausible for some of analytes as a greater percent of acetic acid is used in the elution. Values of correlation coefficients (R2) range between 0.9995 and 0.9996, indicating good linearity.  相似文献   

7.
The retention behavior of low- and high-molecular-mass poly(ethylene oxide) (PEO) in reversed-phase (RP) and normal-phase (NP) liquid chromatography was investigated. In RPLC using a C18 bonded silica stationary phase and an acetonitrile-water mixture mobile phase, the sorption process of PEO to the stationary phase showed deltaH(o) > 0 and deltaS(o) > 0. Therefore, PEO retention in RPLC separation is an energetically unfavorable, entropy-driven process, which results in an increase of PEO retention as the temperature increases. In addition, at the enthalpy-entropy compensation point the elution volume of PEO was very different from the column void volume. These observations are quite different from the RPLC retention behavior of many organic polymers. The peculiar retention behavior of PEO in RPLC separation can be understood in terms of the hydrophobic interaction of this class of typical amphiphilic compounds with the non-polar stationary phase, on the one hand, and with the aqueous mobile phase, on the other. The entropy gain due to the release of the solvated water molecules from the PEO chain and the stationary phase is believed to be responsible for the entropy-driven separation process. On the other hand, in NPLC using an amino-bonded silica stationary phase and an acetonitrile-water mixture mobile phase, PEO showed normal enthalpy-driven retention behavior: deltaH(o) < 0 and deltaS(o) < 0, with the retention decreasing with increasing temperature and PEO eluting near the column void volume at the enthalpy-entropy compensation point. Therefore, high-resolution temperature gradient NPLC separation of high-molecular-mass PEO samples can be achieved with relative ease. The molecular mass distribution of high-molecular-mass PEO was found to be much narrower than that measured by size-exclusion chromatography.  相似文献   

8.
填充柱超临界流体色谱系统中的溶剂效应   总被引:2,自引:0,他引:2  
陆峰  刘荔荔  吴玉田 《色谱》2000,18(2):155-157
 考察了填充柱超临界流体色谱法 (SFC)中的样品溶剂及连续进样等因素对化合物保留行为变化的影响规律。以超临界 CO2 或含低体积分数甲醇的 CO2 为流动相时 ,氨基柱上组分的保留时间随着样品溶剂的极性增大而增大 ,而溶剂对 C1 8柱上组分的保留时间影响不大 ;在 C1 8柱上 ,溶剂对连续进样的后续效应不强 ;而在氨基柱上 ,甲醇溶液的后续效应比丙酮、氯仿溶液的后续效应强。当甲醇的体积分数大于 1 .0 %时 ,溶剂的效应明显减弱。这种变化规律对填充柱 SFC的合理进样并获得重现性良好的色谱数据具有实际意义。  相似文献   

9.
The interaction parameter of a given repeat unit in liquid adsorption chromatography (LAC) can be determined from the slope in a plot of the elution volumes versus the difference in elution volumes of subsequent monomers. In such a plot, the intercept represents the void volume, and from the slope the adsorption interaction parameter can be calculated. This parameter is independent of column dimensions and pore diameter and can thus be used as a measure of the interaction of a given repeat unit with the surface of a stationary phase in a given mobile phase composition. The interaction parameter can also be obtained from the slope in a plot of the logarithmic retention factors k versus the number of repeat units n or from the slope in a plot of the logarithmic difference in elution volumes of subsequent monomers versus n. The values obtained by the three different approaches are in good agreement. In a given mobile phase, the interaction parameter of a given repeat unit was found to be almost the same for various alkyl bonded columns from different producers. The retention of a given oligomer depends as well on the interaction parameter as on the pore dimensions (and thus the internal pore surface) of the stationary phase. The pore surface can be determined from the intercept in a plot of the logarithmic difference in elution volumes of (subsequent) nonfunctional monomers as a function of n. As the interaction parameter of a given repeat unit in a given mobile phase is the same for stationary phases with the same chemical nature, retention can be adjusted by selection of the pore surface. On a given stationary phase, there is a linear dependence between interaction parameter and mobile phase composition.  相似文献   

10.
It was demonstrated that the characteristics of stationary phases for reversed-phase chromatography can be compared by analyzing the retention of several compounds belonging to a homologous series during elution with one and the same composition of mobile phase or the retention of a nonpolar compound during elution with several mobile phases of different compositions. The slope of the corresponding linear correlations can be used to characterize the hydrophobicity of the columns (stationary phases) under study. To analyze the polar interactions between the sorbate and the stationary phase it is advantageous to study the retention of a polar substance in several (at least in two) mobile phases of different compositions. The degree of displacement of the linear correlation relative to that for nonpolar substances can be considered a measure of the influence of residual silanol groups on the total retention characteristics.  相似文献   

11.
A polar-embedded stationary phase (ULTIMA C18) has been investigated for the separation of alpha-, beta-, gamma- and delta-tocopherols by CEC in comparison with commercially available C(18) and C(30) n-alkyl RPs. The behavior of this stationary phase was tested for different mobile phases based on methanol, ACN, or mixtures thereof and different separation parameters such as retention factors and resolution were evaluated. The main feature of this stationary phase is the improved selectivity for the separation of beta- and gamma-tocopherols (positional isomers) when compared with the pure n-alkyl C(18) material, which was unable to resolve these compounds. Additionally, it is possible to observe a reversal in the elution order of the beta- and gamma-tocopherol isomers with respect to that obtained on the C(30) column. The resulting data indicate that the enhanced selectivity obtained with the polar-embedded stationary phase, with respect to the conventional C(18) material, is due to the participation of both hydrophobic and polar interactions: these latter are of the hydrogen bridge type with the amide group of the polar-embedded stationary phase, which increases the retention of the tocopherols and facilitates the discrimination between the beta- and gamma-isomers. Adequate separation of the four tocopherols was obtained by CEC using the polar-embedded stationary phase and 95:5 v/v methanol/water (5 mM Tris, final concentration) as the mobile phase.  相似文献   

12.
A recently introduced method [Biotechnol. Prog. 13 (1997) 429] for determining intraparticle mass transfer parameters in high speed liquid chromatography is considered in the present study for the case where the eluite adsorbs onto the stationary phase. The validity of the method was verified theoretically using simulated elution profiles and then applied to experimental data obtained using columns packed with either a macroporous or a gel-filled gigaporous stationary phase. For this purpose, experimental measurements were made using alpha-lactalbumin and bovine serum albumin as eluites at several retention factors. Apparent intraparticle diffusivities measured for the gel-filled gigaporous stationary phase were seen to increase with the retention factor, which indicates that for this material surface diffusion is a significant mechanism of mass transfer under retained conditions. Data obtained on the macroporous stationary phase revealed that the intraparticle diffusivity was independent of the retention factor, which suggests that pore diffusion remains the principal mass transfer mechanism even under conditions where proteins are adsorbed on the column packing.  相似文献   

13.
Several procedures are available for simulating and optimising separations in ion chromatography (IC), based on the application of retention models to an extensive database of analyte retention times on a wide range of columns. These procedures are subject to errors arising from batch-to-batch variability in the synthesis of stationary phases, or when using a column having a different diameter to that used when the database was acquired originally. Approaches are described in which the retention database can be recalibrated to accommodate changes in the stationary phase (ion-exchange selectivity coefficient and ion-exchange capacity) or in the column diameter which lead to changes in phase ratio. The entire database can be recalibrated for all analytes on a particular column by performing three isocratic separations with two analyte ions. The retention data so obtained are then used to derive a "porting" equation which is employed to generate the required simulated separation. Accurate prediction of retention times is demonstrated for both anions and cations on 2mm and 0.4mm diameter columns under elution conditions which consist of up to five sequential isocratic or linear gradient elution steps. The proposed approach gives average errors in retention time prediction of less than 3% and the correlation coefficient was 0.9849 between predicted and observed retention times for 344 data points comprising 33 anionic or cationic analytes, 5 column internal diameters and 8 complex elution profiles.  相似文献   

14.
The chromatographic elution has been studied from different perspectives. However, in spite of the simplicity and evident deficiencies of the plate model proposed by Martin and Synge, it has served as a basis for the characterization of columns up-to-date. This approach envisions the chromatographic column as an arbitrary number of theoretical plates, each of them consisting of identical repeating portions of mobile phase and stationary phase. Solutes partition between both phases, reaching the equilibrium. Mobile phase transference between the theoretical plates is assumed to be infinitesimally stepwise (or continuous), giving rise to the mixing of the solutions in adjacent plates. This yields an additional peak broadening, which is added to the dispersion associated to the equilibrium conditions. It is commonly assumed that when the solute concentration is sufficiently small, chromatographic elution is carried out under linear conditions, which is the case in almost all analytical applications. When the solute concentration increases above a value where the stationary phase approximates saturation (i.e. becomes overloaded), non-linear elution is obtained. In addition to overloading, another source of non-linearity can be a slow mass transfer. An extended Martin and Synge model is here proposed to include slow mass-transfer kinetics (with respect to flow rate) between the mobile phase and stationary phase. We show that there is a linear relationship between the variance and the ratio of the kinetic constants for the mass transfer in the flow direction (τ) and the mass transfer between the mobile phase and stationary phase (ν), which has been called the kinetic ratio (κ=τ/ν). The proposed model was validated with data obtained according to an approach that simulates the solute migration through the theoretical plates. An experimental approach to measure the deviation from the equilibrium conditions using the experimental peak variances and retention times at several flow rates is also proposed.  相似文献   

15.
以3.0μm无孔单分散亲水性交联聚甲基丙烯酸环氧丙酯树脂为基质,将其表面经新的化学方法改性后制备了一种新型的无孔中强阳离子交换色谱填料。详细考察了该无孔填料对标准蛋白分离性能,有机溶剂、pH、流动相盐种类和流速等对蛋白质保留的影响。实验结果表明,在流速为4 mL/min时,线性梯度时间在2.0 min内可快速分离4种标准蛋白,蛋白质的保留符合阳离子交换色谱规律。将其应用于快速纯化鸡蛋清中的溶菌酶,取得较好效果。  相似文献   

16.
The first six linear and cyclic oligomers of polyamide-6 can be quantitatively determined in the polymer using HPLC with the sandwich injection method and an aqueous acetonitrile gradient. In this final part of the triptych concerning the determination of the oligomers in polyamide-6, the irregular elution behavior of the cyclic monomer compared to the cyclic oligomers was investigated. We also optimized the separation of the involved polyamide oligomers, with respect to gradient steepness, stationary phase, column temperature and mobile phase pH. The irregular elution behavior of the cyclic monomer could be caused by its relatively large exposed/accessible hydrophobic surface, which permits relatively easy penetration into the hydrophobic stationary phase giving extra retention. The dipole moment of the different oligomers was used as a measure for this exposed/accessible hydrophobic area to correlate the retention factors using quantitative structure-retention relationships. We also studied the retention behavior of the polyamide, which is injected each run directly onto the column and modifies the stationary phase. Using a 250-microl post gradient injection zone of formic acid on a 250x3 mm Zorbax SB-C18 column, the polyamide could be effectively removed from the stationary phase after each separation. The linear solvent strength (LSS) model was used to optimize the separation of the first six linear and cyclic oligomers. As the LSS model assumes a linear correlation between the modifier concentration and the logarithm of the retention factor and the cyclic monomer and dimer show extreme curvation of this relation in the eluting region, we investigated different models to predict gradient elution from isocratic data. A direct translation of the isocratic data to gradient retention times did not yield adequate retention times using the LSS model. It was found that the LSS model worked acceptably if gradient retention times were used as input data. Even for fast non-linearly eluting components, an average error of 0.4 resolution units of 4sigma was obtained. Using the LSS model in combination with different column temperatures and mobile phase pH values, a separation of the first six linear and cyclic oligomers was accomplished.  相似文献   

17.
Fatty alcohol ethoxylates (FAEs) are widely used nonionic surfactants that have distributions in both alkyl and poly(ethylene oxide) (PEO) chain length. Generally, two-dimensional liquid chromatography technique is required for the complete characterization of both distributions. By selecting a proper stationary and mobile phase condition, however, we can obtain fully resolved chromatograms of a FAE sample (Brij 30) with respect to both alkyl and PEO chain length by using a single reversed-phase C18 column and aqueous acetonitrile mobile phase. FAEs show a peculiar reversed-phase liquid chromatography (RPLC) retention behavior with an aqueous-organic mobile phase, the retention mechanism of which has not been fully elucidated. For a fixed alkyl chain length, FAEs with higher-molecular-mass PEO block elutes first and the van't Hoff plot of the retention factor shows a curvature. The unique retention behavior can be understood from the opposite thermodynamic characteristics associated with RPLC retention of PEO block and alkyl chain: the sorption process of PEO to the non-polar stationary phase shows deltaH(o) > 0 and deltaS(o) > 0 while the alkyl chain shows deltaH(o) < 0 and deltaS(o) < 0 in contrast. The relative magnitude of the two contributions can change the elution order of the FAE. Therefore the often found, inverted elution order of FAEs (the early elution of FAEs with longer PEO block) is due to the positive enthalpic interaction of PEO blocks, which is a characteristic of the hydrophobic interaction. And the curvature of the van't Hoff plots was analyzed assuming the temperature dependent thermodynamic variables.  相似文献   

18.
Summary The retention data of isomeric xylenes, ethyltoluenes and diethylbenzenes, and of mesitylene, benzene, toluene and ethylbenzene were obtained on a reversedphase column using methanol-water and ethanol-water mobile phases at four different temperatures. This database was used to relate the dependence of solute retention and resolution on the polarity of the mobile phase, solute dipole moment, and column temperature. The additivity of the free energy of the transfer of solute molecules or solute segments from the stationary phase to the mobile phase, was examined for the isomeric compounds. For this, the logarithm of the net retention volume was substituted for the free energy. Deviations from the additivity of free energies indicate that the separation of isomeric substituted alkylbenzenes is governed by their differential interactions with both the polar mobile phase and nonpolar stationary phase. Among the disubstituted alkylbenzenes,ortho-isomers favor the mobile phase more andpara-isomers tend to prefer the stationary phase more. Themeta-isomers are found to follow the additivity rule closely. These trends are amplified as the polarity of the mobile phase is increased indicating that these isomers are resolved better in water-rich mobile phases. These findings are substantiated by analogous results from gas-liquid chromatographic retention data, estimation of dipole moment effects, and examination of the entropic and enthalpic contributions to the net retention volume.Dedicated to Professor Leslie S. Ettre on the occasion of his 70th birthday.  相似文献   

19.
The elution of ions from a C18 column with mobile phases containing methanol (60%, v/v) and aqueous buffers is studied by mass spectrometry. It is demonstrated that the anions are excluded from the stationary phase by the ionized silanols. However, the ionized silanols interact strongly with cations, which are retained in the column. These cations are later eluted from the column by ion exchange with the cations present in the pH buffered mobile phase. The size of the ions, the mobile phase cation concentration and the mobile phase pH are the main parameters that affect elution of the retained cations. It is also demonstrated that there are at least two different types of ionizable silanols, with different acidities, that contribute to the retention of cations. An estimate of the pKa values of these two groups of silanols in 60% methanol is given.  相似文献   

20.
Enantioseparation of 1,1??-bi-2-naphthol (BINOL) was performed on an immobilized polysaccharide-based chiral stationary phase (CSP), Chiralpak IA, in the normal-phase mode. The effects of polar modifier in the mobile phase and column temperature on retention, enantioseparation, and elution order were investigated. An interesting reversal of elution order for BINOL was observed. When ethanol was used as a polar modifier, R-BINOL was eluted first with marginal enantioseparation. Excellent enantioseparation was obtained when ethanol was replaced by 1-propanol, and S-BINOL was eluted first, this effect being retained with 2-butanol, 1-butanol, 1-pentanol or 1-hexanol as the modifier. When isoamyl alcohol was used, reversal of elution order was again observed, i.e., R-BINOL eluted first with marginal enantioseparation, similar to the case of ethanol. When cyclohexanol and cyclopentanol were used, R-BINOL was still eluted first, but enantioseparation was as good as with 1-propanol as the modifier. This is the first report of large enantioseparation obtained in both elution orders for a given selector/selectant system. A retention model based on stoichiometric displacement theory for retention (SDT-R) was investigated to fit the chromatographic data. The reason for solvent-induced reversal of elution order was elucidated based on a derivation of the retention model. Reversal of elution order for BINOL induced by the content of isoamyl alcohol was also predicted based on the model and confirmed by experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号