首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Abstract  

Thermolysis of cis-Fe(CO)4(SiCl3)2 results in the formation of the novel compound Fe2(CO)62-SiCl2)3, which was characterized by single crystal X-ray diffraction. Density functional theory calculations were carried out to elucidate possible reaction steps leading to the formation of Fe2(CO)6(SiCl2)3, including CO dissociation and chlorine abstraction by a SiCl3 radical generated from homolytic Fe–Si bond cleavage involving a singlet–triplet intersystem crossing.  相似文献   

2.
Photolysis of a hexane solution containing Fe(CO)5 and CS2 leads to desulfurization and formation of a novel cluster [{Fe2(CO)6}2(μ-C2S3)] (1). Its molecular structure was determined by single crystal X-ray diffraction methods and shown to consist of two distinct Fe2(CO)6 units linked by an unusual C2S3 unit.  相似文献   

3.
Novel anhydrous trinuclear 3-oxo complexes of Cr(III), Cr3(3-O)(CF3COO)6(CH3COOH)2(CF3COO) (I) and of Cr(III,III,II), Cr3(3-O)(CF3COO)6(CH3COOH)2(THF) (II) (where THF is (CH2)4O) are synthesized by anodic dissolution of metallic chromium in solutions of trifluoroacetic acid in acetonitrile and in tetrahydrofuran and their structures are studied by X-ray diffraction analysis. Complex I forms orthorhombic crystals with space group Pna21, a = 9.778(1) , b = 16.042(2) , c = 22.851(4) , Z = 4, R 1 = 0.0332; complex II crystallizes in monoclinic system: space group P21/c, a = 9.866(1) , b = 17.895(2) , c = 21.167(4) , = 100.75(2)°, Z = 4, R = 0.0422. The average Cr-(3-O) distances in compounds I and II are almost equal (1.943(3) and 1.927(3) ). An average length of the Cr-O bond in octahedral surrounding of metal atoms is different in complexes I and II (1.985(4) and 2.003(3) , respectively), which is specified by different oxidation states of the metal atom. The CrCr distances lie in an interval of 3.366(1)–3.337(1) .__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 4, 2005, pp. 266–272.Original Russian Text Copyright © 2005 by Glazunova, Boltalin, Troyanov.  相似文献   

4.
《物理化学学报》1999,15(6):6-31G
用密度泛函理论UB3LYP/6-31G(d,p)方法研究了二甲胺自由基(CH  相似文献   

5.
The title compound has been obtained in considerable yield by reacting Ru3(CO)12 with 2-pentynal-diethyl-acetal [CH3CH2CCC(H)(OEt)2] (PDA) in hydrocarbon solvents. The X-ray analysis shows that the title complex belongs to the well known family of the flyover derivatives. Some X-ray structural studies have been reported, many years ago, on di-iron flyover complexes; in contrast only a few examples of diruthenium derivatives have been structurally characterized.The complex contains ethoxy-groups which could potentially undergo hydrolysis in the presence of tetraethyl-orthosilicate (TEOS) in the presence of catalysts. Reactions of complex Ru2(CO)6[μ-η4-{EtC2C(H)(OEt)2}CO{EtC2C(H)(OEt)2}] with TEOS in the presence of HCl or of NaF (as catalysts) have been attempted. An inorganic-organometallic sol-gel material containing the skeleton of the complex has been obtained and characterized with IR-Raman, XRD on powders and SEM microscopy.  相似文献   

6.
The thermal reactions of 2-methyl-1-hexen-3-yne [CH3CH2C≡CC(=CH2)CH3, metey] with Fe3(CO)12 have been studied: cluster opening or fragmentation and alkyne dimerization occur. Main products are the open triangular isomers [Fe3(CO)6(μ-CO)2{CH3(=CH2)CC(Et)C(Et)C(=CH2)CH3}] (complex 3a) and [Fe3(CO)6(μ-CO)2{C(Et)CCH3(=CH2)C(Et)CCH3(=CH2)}] (complex 3b). The structure and isomerism of the complexes has been confirmed by X-ray studies. The minor products of the reaction have been characterized by spectroscopic techniques. An attempt at exploiting the reactivity of the “free” C=C bonds of the coordinated ene-yne was made: complex 3a was reacted with styrene under thermal conditions. Unexpectedly considerable yields of the closed triangular cluster [Fe3(CO)6{EtC2C(=CH2)CH3}2] (complex 5) have been obtained. This behaviour had not been previously observed. The unprecedented structure of complex 5 has been confirmed with an X-ray study.  相似文献   

7.
The title complex is obtained by reacting Ru3(CO)12 with 1,4-dichloro-but-2-yne (ClCH2CCCH2Cl, DCB) in CH3OH/KOH solution (followed by acidification with HCl). The X-ray structure analysis shows that (μ-H)2Ru3(CO)932-[H2CC(H)CCC(O)OCH3]} complex contains a “parallel” ene-yne acetyl substituent, H2CC(H)CCC(O)OCH3; the formation of such a ligand starting from DCB is - to our knowledge - unprecedented. The synthesis of complex (μ-H)2Ru3(CO)932-[H2CC(H)CCC(O)OCH3]} occurs through the activation of CO and methanol. This process has been found for other reactions of functionalized alkynes with M3(CO)12 carbonyls (M = Fe, Ru) under basic methanolic conditions.The known hydridic cluster, (μ-H)Ru3(CO)933-(MeCCHCH)] has been identified as the minor reaction product.  相似文献   

8.
Treatment of ruthenium carbonyl, [Ru3(CO)12] with phenylseleno tribromide PhSeBr3 afforded a new triruthenium cluster, [(CO)10Br4Ru3(μ-SePh)2] (1). Its molecular structure was determined by single crystal XRD method (P21/c; a = 10.514(3) Å; b = 10.814(3) Å; c = 19.063(5) Å; β = 105.064(4)°; V = 2093.1(10) Å3) and shown to have two lateral Ru(CO)3Br2 units attached via two PhSe bridges to a Ru(CO)4 center forming a chain-like Ru-Se-Ru-Se-Ru cluster core. This is in contrast with a recently reported reaction of PhTeBr3 with [Ru3(CO)12] which formed a monomeric complex of ruthenium-dicarbonyl-dibromo fragment coordinating two PhTeBr ligands, [(CO)2RuBr2(PhTeBr)2].  相似文献   

9.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

10.
New complexes of transition metals with organotellurium halide ligands are reported. Iodination of [CpMn(CO)2]2(μ-Ph2Te2) leads to the Te-Te bond cleavage and formation of CpMn(CO)2(PhTeI). Oxidative addition of PhTeBr3 to Fe(CO)5 gives the monomeric complex (CO)3FeBr2(PhTeBr) which is isostructural with the recently reported (CO)3FeI2(PhTeI). Insertion of phenyltellurenyl iodide (PhTeI) into the Fe-I bond of CpFe(CO)2I forms CpFe(CO)2(TeI2Ph). Molecular structures of the reported complexes were determined by single-crystal X-ray diffraction analysis (XRD). A considerable shortening of metal-tellurium distances is observed.  相似文献   

11.
尹汉东  王传华  邢秋菊 《中国化学》2005,23(12):1631-1636
Three bismuth(Ⅲ) complexes Bi(1,10-phen)[S2CN(CH3)2]2(NO3) (1), {Bi(S2COCH3)[S2CNC6Hs(CH3)]2}2 (2) and [Bi(S2CNBu2)2(CH3OH)(NO3)]∞ (3) were synthesized and characterized by elemental analysis and IR spectra. Their crystal structures were determined by X-ray single crystal diffraction analysis. Studies show that complex 1 has a monomeric structure with the central bismuth atom eight-coordinated in a capped distorted pentagonal bipyramidal geometry. The complex 2 takes centrosymmetric dimeric structure and the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry.In complex 3, the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry by bridging nitrate O atoms and the resulting structure is onedimensional infinite chain polymer.  相似文献   

12.
The solubilities and nature of solid phases in the Co(NO3)2-(CH3)2SO-H2O system were studied at 25°C. A new congruently saturating compound was recovered: Co(NO3)2 · 4(CH3)2SO · 2H2O. The concentration boundaries of its crystallization in the system were determined. The compound was studied by the Schreinemakers wet residue method, X-ray powder diffraction, differential thermal analysis, crystal-optical analysis, and IR spectroscopy.  相似文献   

13.
A reaction of the dimer [Mn(CO)4(SPh)]2 with (PPh3)2Pt(C2Ph2) gave the heterometallic complex (CO)4Mn(μ-SPh)Pt(PPh3)2 (I) and its isomer (CO)3(PPh3)Mn(μ-SPh)Pt(PPh3)(CO) (II). A reaction of complex I with a diphosphine ligand (Dppm) yielded the heterometallic complex (CO)3Mn(μ-SPh)Pt(PPh3)(Dppm) (III). Complexes IIII were characterized by X-ray diffraction. In complex I, the single Mn-Pt bond (2.6946(3) ?) is supplemented with a thiolate bridge with the shortened Pt-S and Mn-S bonds (2.3129(5) and 2.2900(6) ?, respectively). Unlike complex I, in complex II, one phosphine group at the Pt atom is exchanged for one CO group at the Mn atom. The Mn-Pt bond (2.633(1) ?) and the thiolate bridge (Pt-S, 2.332(2) ?; Mn-S, 2.291(2) ?) are retained. In complex III, the Mn-Pt bond (2.623(1) ?) is supplemented with thiolate (Pt-S, 2.341(2) ?; Mn-S, 2.292(2) 0?) and Dppm bridges (Pt-P, 2.240(1)?; Mn-P, 2.245(2) ?). Apparently, the Pt atom in complexes IIII is attached to the formally double bond , as in Pt complexes with olefins.  相似文献   

14.
用量子化学密度泛函方法,在B3LYP/6-31G*水平下研究了叔丁基自由基(CH3)3C和NO2气体的反应机理.研究表明,该反应是在单、三态势能面上的多通道反应.不同反应通道的产物不同,单态下反应更容易发生.常温下对于一个敞开体系(例如在大气当中),(CH3)3C自由基和NO2作用主要生成比较稳定的化合物(CH3)3CONO和(CH3)3CNO2.这对于消除大气污染起到一定的作用.  相似文献   

15.
A straightforward and efficient transformation of the Fe-S complex [(μ-SCH2NnPrCH2S)Fe2(CO)6] to its double phosphine coordinated analogues [(μ-SCH2NnPrCH2S)Fe2(CO)4(PR3)2] (R = Ph, Me) is described. The single crystal structure of the PPh3-disubstituted complex [(μ-SCH2NnPrCH2S)Fe2(CO)4(Ph3P)2] (3) showed that both of the phosphine ligands take an apical/apical instead of a basal/basal or an apical/basal configuration.  相似文献   

16.
Reactions of [Fe2(CO)6(μ-pdt)] (1) (pdt = SCH2CH2CH2S) and small bite-angle diphosphines have been studied. A range of products can be formed being dependent upon the nature of the diphosphine and reaction conditions. With bis(diphenylphosphino)methane (dppm), thermolysis in toluene leads to the formation of a mixture of bridge and chelate isomers [Fe2(CO)4(μ-dppm)(μ-pdt)] (2) and [Fe2(CO)42-dppm)(μ-pdt)] (3), respectively. Both have been crystallographically characterised, 3 being a rare example of a chelating dppm ligand in a first row binuclear system. At room temperature in MeCN with added Me3NO · 2H2O, the monodentate complex [Fe2(CO)51-dppm)(μ-pdt)] (4) is initially formed. Warming 4 to 100 °C leads the slow conversion to 2, while oxidation (on alumina) gives [Fe2(CO)51-dppmO)(μ-pdt)] (5). With bis(dicyclohexylphosphino)methane (dcpm), heating in toluene cleanly affords [Fe2(CO)4(μ-dcpm)(μ-pdt)] (6). With Me3NO · 2H2O in MeCN the reaction is not clean as the phosphine is oxidised but monodentate [Fe2(CO)51-dcpm)(μ-pdt)] (7) can be seen spectroscopically. With 1,2-bis(diphenylphosphino)benzene (dppb) and cis-1,2-bis(diphenylphosphino)ethene (dppv) the chelate complexes [Fe2(CO)42-dppb)(μ-pdt)] (8) and [Fe2(CO)42-dppv)(μ-pdt)] (9), respectively are the final products under all conditions, although a small amount of [Fe2(CO)52-dppvO)(μ-pdt)] (10) was also isolated. Protonation of 2 with HBF4 affords a cation with poor stability while with the more basic diiron centre in 6 readily forms the stable bridging-hydride complex [(μ-H)Fe2(CO)4(μ-dcpm)(μ-pdt)][BF4] (11) which has been crystallographically characterised.  相似文献   

17.
室温下对苯二甲酸二丙炔醇酯分别与Co2CO8Mo2Cp2CO4和RuCo2CO11反应得到三个有机金属化合物C6H4pCO2CH2C2Hμ2Co2CO621、C6H4pCO2CH2C2H2RuCo2CO922和HC2CH2OCOC6H4pCO2CH2C2HμMo2Cp2CO43。研究发现三种金属核对端炔氢的屏蔽作用依次为RuCo2CO9>Co2CO6>Mo2CO4Cp2。化合物1的晶体衍射发现属三斜晶系空间群a=8.1392b=8.8083c=11.3433β=96.2606°V=773.443Z=1Dc=1.748g·cm-3R=0.0513wR=0.1266。  相似文献   

18.
Reactions of Ru3(CO)12 with PhTeBr3 and of Re(CO)5Cl with PhTeI in benzene give the stable complexes (CO)2RuBr2(PhTeBr)2 (I) and (CO)3Re(PhTeI)33-I) (II) containing two and three ligands PhTeX (X = Br or I), respectively. The bonds between these ligands and the central metal atom are fairly shortened (on average, Ru-Te, 2.608 ?; Re-Te, 2.7554(12)-2.7634(13) ?). The Te-X bonds in the ligands PhTeBr (2.5163(5) ?) and PhTeI (2.7893(15) ?) are not lengthened appreciably. In complex II, the iodide anion is not coordinated by rhenium, yet being attached through weak secondary bonds to three Te atoms of the three ligands PhTeI.  相似文献   

19.
Methods for the synthesis of trans-diammino complexes [RuNO(NH3)2(NO2)2(OH)] (I) and [RuNO(NH3)2(H2O)(NO3)2](NO3)·H2O (II) are suggested. The compounds were studied by IR spectroscopy and X-ray phase and X-ray structural analyses. Crystal data: space group P-1; a = 6.2328(2) ?, b = 11.0488(3) ?, c = 11.0981(4) ?, α = 71.942(1)°, β = 83.291(1)°, γ = 86.877(1)° (I); space group P21; a = 6.6290(2) ?, b = 13.4389(5) ?, c = 7.0180(2) ?, β 114.281(1)° (II). Complex II readily lost some part of crystal water on storage in open air. Original Russian Text Copyright ? 2009 by M. A. Il’in, E. V. Kabin, V. A. Emel’yanov, I. A. Baidina, and V. A. Vorob’yov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 50, No. 2, pp. 341–348, March–April, 2009.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号