首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the mechanisms of many chemiluminescence (CL) reactions have been intensively studied, no general model has been suggested to rationalize the efficiency of these transformations. To contribute to this task, we report here quantum yields for some well‐characterized CL reactions, concentrating on recent reports of efficient transformations. Initially, a short review on the most important general CL mechanisms is given, including unimolecular peroxide decomposition, electrogenerated CL, as well as the intermolecular and intramolecular catalyzed decomposition of peroxides. Thereafter, quantum yield values for several CL transformations are compiled, including the unimolecular decomposition of 1,2‐dioxetanes and 1,2‐dioxetanones, the catalyzed decomposition of appropriate peroxides and the induced decomposition of properly substituted 1,2‐dioxetane derivatives. Finally, some representative examples of quantum yields for complex CL transformations, like luminol oxidation and the peroxyoxalate reaction, in different experimental conditions are given. This quantum yield compilation indicates that CL transformations involving electron transfer steps can occur with high efficiency in general only if the electron transfer is of intramolecular nature, with the intermolecular processes being commonly inefficient. A notable exception to this general rule is the peroxyoxalate reaction which, also constituting an example of an intermolecular electron transfer system, possesses very high quantum yields.  相似文献   

2.
Photoinduced electron‐transfer processes in fullerene‐based donor–acceptor dyads (D? B? A) in homogeneous and cluster systems are summarized. Stabilization of charge has been achieved through the use of fullerene substituted‐aniline/heteroaromatic dyads with tunable ionization potentials and also by using fullerene clusters. The rate constants for charge separation (kCS) and charge recombination (kCR) in fullerene substituted‐aniline/heteroaromatic dyads show that forward electron transfer falls in the normal region of the Marcus curve and the back electron transfer in the inverted region of the Marcus parabola. Clustering of fullerene‐based dyads assists in effective delocalization of the separated charge and thereby slows down the back electron transfer in these cases.  相似文献   

3.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

4.
Metal‐free oxidative C? C coupling by using polyalkoxybenzene‐derived diaryliodonium(III) salts as both the oxidant and aryl source has been developed. These salts can induce single‐electron‐transfer (SET) oxidation to yield electron‐rich arenes and subsequently transfer the polyalkoxyphenyl group into in situ generated aromatic radical cations to produce biaryl products. The reaction is promoted by a Lewis acid that activates the iodonium salts. It has been revealed that the reactivity of the salts under acidic conditions is quite different to their known behavior under basic conditions. The reactivity preference of a series of iodonium salts in the SET oxidation and their ligand transfer abilities have been systematically investigated and the results are summarized in this report.  相似文献   

5.
In this account, studies on the photosensitizing electron transfer of nanocarbons, such as fullerenes, single‐walled carbon nanotubes (SWCNTs), and carbon nanohorns (CNH), performed in our laboratory for about 15 years in the early 21st century have been briefly reviewed. These novel nanocarbons act as excellent electron acceptors, when they are linked to light‐absorbing electron donors, such as porphyrins or phthalocyanines. For such molecule–nanocarbon hybrids, the direct confirmation of fast, transient, electron‐transfer phenomena must be performed with time‐resolved spectroscopic methods, such as transient absorption spectral measurements, in addition to fluorescence time‐profile measurements in the wide‐wavelength regions. Careful use of these methods affords useful information to understand photoinduced electron‐transfer mechanisms. In addition, kinetic data obtained by these methods can assist in the construction of light‐active devices, such as photovoltaic cells and solar H2‐generation systems.  相似文献   

6.
The first examples of rodlike donor–photosensitizer–acceptor arrays based on bis‐2,6‐di(quinolin‐8‐yl)pyridine RuII complexes 1 a and 3 a for photoinduced electron transfer have been synthesized and investigated. The complexes are synthesized in a convergent manner and are isolated as linear, single isomers. Time‐resolved absorption spectroscopy reveals long‐lived, photoinduced charge‐separated states (τCSS ( 1 a )=140 ns, τCSS ( 3 a )=200 ns) formed by stepwise electron transfer. The overall yields of charge separation (≥50 % for complex 1 a and ≥95 % for complex 3 a ) are unprecedented for bis‐tridentate RuII polypyridyl complexes. This is attributed to the long‐lived excited state of the [Ru(dqp)2]2+ complex combined with fast electron transfer from the donor moiety following the initial charge separation. The rodlike arrangement of donor and acceptor gives controlled, vectorial electron transfer, free from the complications of stereoisomeric diversity. Thus, such arrays provide an excellent system for the study of photoinduced electron transfer and, ultimately, the harvesting of solar energy.  相似文献   

7.
基于B3P86/6 311+G优化的N3与N-3分子几何,确定了N3+N-3基态电子转移体系 的六种不同的耦合机理,及各种形式耦合络合物的几何性质、活化能、稳定化能、耦合矩阵 元和态密度,并利用黄金规则计算了电子转移速率,讨论了各耦合方式对电子转移速率的影响 .  相似文献   

8.
A novel trifluoroethoxy (TFEO)‐coated SubPc ( 1 ) and various axially functionalised derivatives thereof ( 2 ) have been efficiently synthesised. The advantage of the TFEO‐coating on SubPcs compared to conventional fluorine‐coated or uncoated molecules has been clearly demonstrated, as axial derivatisation has been realised in very good yields. Among various SubPcs synthesised, formyl‐SubPc 2 f has been further used as a building block for the synthesis of donor–acceptor SubPc–C60 hybrid 8 , while iodo‐SubPc 2 e has been used for the synthesis of trifluoroethoxy‐coated SubPc–Pc dyads 9 and 10 . All of these compounds are highly soluble in all common organic solvents, which greatly facilitates their purification and characterisation. The SubPcs 2 a – c incorporating oligoethylene glycol moieties are attractive from a biological point of view, while SubPcs 8 – 10 may prove useful for studies of intramolecular electron‐ and energy‐transfer processes.  相似文献   

9.
Metal‐to‐metal charge transfer (MMCT) describes electron transfer between metal ions, to generate valence isomers with markedly different electronic configurations. In particular, MMCT changes the spin states of single‐metal sites and the coupling interactions between them, while also changing the symmetry in charge distribution. The result is a drastic change in both magnetic and electric properties of the affected material. Moreover, MMCT causes significant variation in bond length and absorption spectra, and induces unusual thermal expansion and photochromic behavior. Thus, materials demonstrating MMCT in response to external stimuli are excellent candidates for switchable multifunctional devices with synergistic responses. In this Minireview, recent progress in utilizing MMCT units as actuators to tune magnetic, electric, thermal expansion, and photochromic properties in cyanide‐bridged systems is highlighted, and emphasis is given to the remaining challenges and future perspectives in the field.  相似文献   

10.
Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron‐deficient quinones are used. We have successfully employed HBD‐coupled electron transfer as a strategy to activate electron‐deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone‐mediated model synthetic transformation.  相似文献   

11.
An efficient synthesis of N‐phthalimidyl, benzamidyl, acetamidyl, carbamoyl, and ureayl derivatives of dihydropyridines and the application of these reagents as precursors for N‐centered radicals are presented. These aminated dihydropyridines could be used in radical‐transfer hydroamination reactions of various electron‐rich as well as nonactivated olefins in the presence of thiols as polarity‐reversal catalysts. These reactions worked without the aid of any transition metal. Steric and electronic effects exerted by the N‐substitutents of the N‐centered radicals are discussed. In contrast to most metal‐catalyzed processes, the radical hydroamination delivered the opposite regioisomer with excellent anti‐Markovnikov selectivity. Hydroamination products were obtained as protected amines that are readily isolated.  相似文献   

12.
Reductive cleavage of the three cyanobenzyl chloride isomers in N,N‐dimethylformamide gives new insights into the factors that control the mechanism during dissociative electron transfer. Within the family of investigated compounds, electrochemical reduction leads to expulsion of the chloride ion. While electron transfer is concerted with breaking of the C? Cl bond and acts as the rate‐determining step in the case of both the ortho and para isomers, an intermediate anion radical is formed before rapid fragmentation in the case of the meta isomer. Such an unexpected mechanistic shift (all key thermodynamic parameters are very similar for the three chlorides) is interpreted in the framework of a modified version of the dissociative electron‐transfer model that includes electronic coupling effects between the diabatic states of the products. These effects appear to control the very existence of a transient species along the reaction pathway.  相似文献   

13.
The ability of the DNA double helix to transport electrons underlies many life‐centered biological processes and bio‐electronic applications. However, there is little consensus on how efficiently the base pair π‐stacks of DNA mediate electron transport. This minireview scrutinizes the current state‐of‐the‐art knowledge on electron transfer (ET) properties of DNA and its long‐range ability to transfer (mediate) electrical signals at electrified interfaces, without being oxidized or reduced. Complex changes an electric field induces in the DNA structure and its electronic properties govern the efficiency of DNA‐mediated ET at electrodes and allow addressing the existing phenomenological riddles, while recently discovered rectifying properties of DNA contribute both to our understanding of DNA′s ET in living systems and to advances in molecular bioelectronics.  相似文献   

14.
Apoptosis has close relevance to pathology, pharmacology, and toxicology. Accurate and convenient detection of apoptosis would be beneficial for biological study, clinical diagnosis, and drug development. Based on distinct features of apoptotic cells, a diversity of analytical techniques have been exploited for sensitive analysis of apoptosis, such as surface plasmon resonance, electrochemical methods, flow cytometry, and some imaging assays. Among them, the features of simplicity, easy operation, low cost, and high sensitivity make electrochemical techniques powerful tools to investigate electron‐transfer processes of in vitro biological systems. In this contribution, a general overview of current knowledge on various technical approaches for apoptosis evaluation is provided. Furthermore, recently developed electrochemical biosensors for detecting apoptotic cells and their advantages over traditional methods are summarized. One of the main considerations focuses on designing the recognition elements based on various biochemical events during apoptosis.  相似文献   

15.
Diethylamino‐substituted oligophenylenevinylene (OPV) building blocks have been prepared and used for the synthesis of two [60]fullerene–OPV dyads, F‐D1 and F‐D2 , which exhibit different conjugation length of the OPV fragments. The electrochemical properties of these acceptor–donor dyads have been studied by cyclic voltammetry. The first reduction is always assigned to the fullerene moiety and the first oxidation centered on the diethylaniline groups of the OPV rods, thus making these systems suitable candidates for photoinduced electron transfer. Both the OPV and the fullerene‐centered fluorescence bands are quenched in toluene and benzonitrile, which suggests the occurrence of photoinduced electron transfer from the amino‐substituted OPVs to the carbon sphere in the dyads in both solvents. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species are detected in the visible (670 nm) and near‐IR (1300–1500 nm) regions, along with the much weaker fullerene anion band at λmax=1030 nm. Definitive evidence for photoinduced electron transfer in F‐D1 and F‐D2 comes from transient absorption measurements. A charge‐separated state is formed within 100 ps and decays in less than 5 ns.  相似文献   

16.
Recently, four‐coordinated N,C‐chelate organoboron compounds have been found to show many interesting photochemical transformations depending on the nature of their chelating framework. As such, the effect of substitution on the chelate ligand has been well‐established and understood, but the impact of the aryl groups attached to the boron atom remains less clear. To investigate the effect of enhanced charge‐transfer character, a series of new N,C‐chelate organoboron compounds with donor‐functionalized aryl groups have been synthesized and characterized using NMR, UV/Vis, and electrochemical methods. These compounds were found to possess bright and tunable charge‐transfer luminescence which is dependent on the donor strength of the amino substituent. In addition, some of these compounds undergo photochromic switching, producing dark isomers of various colors. This work establishes that donor‐functionalization of the aryl groups in N,C‐chelate boron compounds is an effective strategy for tuning both the photophysical and photochemical properties of such systems. The new findings also help elucidate the influence of electronic structure on the photoreactivity of N,C‐chelate organoboron compounds which appears to be as important as steric crowding around the boron atom.  相似文献   

17.
树枝形聚合物是一类围绕着中心核,外围链段和官能团呈指数增长的支化高分子.合成方法的发展使发色团可被精确地置于树枝形聚合物的核心、外围甚至支化节点处.树枝形聚合物的特殊结构使其作为模拟光捕获体系被广泛研究.光诱导电子转移和能量传递是光合作用中的重要过程,研究树枝形聚合物体系中的电子转移和能量传递对未来树枝形聚合物在光电器件中的应用有着重要意义.本文综述了近年来光捕获树枝形聚合物体系的研究进展,并重点介绍光捕获树枝形聚合物体系中的能量传递和电子转移过程研究.  相似文献   

18.
A new class of isomers, namely, intercage electron‐transfer isomers, is reported for fluorinated double‐cage molecular anion e?@C20F18(NH)2C20F18 with C20F18 cages: 1 with the excess electron inside the left cage, 2 with the excess electron inside both cages, and 3 with the excess electron inside the right cage. Interestingly, the C20F18 cages may be considered as two redox sites existing in a rare nonmetal mixed‐valent (0 and ?1) molecular anion. The three isomers with two redox sites may be the founding members of a new class of mixed‐valent compounds, namely, nonmetal Robin–Day Class II with localized redox centers for 1 and 3 , and Class III with delocalized redox centers for 2 . Two intercage electron‐transfers pathways involving transfer of one or half an excess electron from one cage to the other are found: 1) Manipulating the external electric field (?0.001 a.u. for 1 → 3 and ?0.0005 a.u. for 1 → 2 ) and 2) Exciting the transition from ground to first excited state and subsequent radiationless transition from the excited state to another ground state for 1 and 3 . For the exhibited microscopic electron‐transfer process 1 → 3 , 2 may be the transition state, and the electron‐transfer barrier of 6.021 kcal mol?1 is close to the electric field work of 8.04 kcal mol?1.  相似文献   

19.
随着分子电子器件研究的兴起,人们广泛使用诸如表面电化学、微接触滴汞电极、导电探针显微术和“Break-junction”等各种电化学或电学手段,对电子传递过程进行了深人研究。本文评述了有关电子在有机单分子膜传递研究的最新进展,同时介绍了与此相关的理论。  相似文献   

20.
Understanding electron‐transfer processes is crucial for developing organoselenium compounds as antioxidants and anti‐inflammatory agents. To find new redox‐active selenium antioxidants, we have investigated one‐electron‐transfer reactions between hydroxyl (.OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. .OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)+ and α‐{bis(hydroxyl alkyl)}‐selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)+, produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号