首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we model multivariate categorical (binary and ordinal) response data using a very rich class of scale mixture of multivariate normal (SMMVN) link functions to accommodate heavy tailed distributions. We consider both noninformative as well as informative prior distributions for SMMVN-link models. The notation of informative prior elicitation is based on available similar historical studies. The main objectives of this article are (i) to derive theoretical properties of noninformative and informative priors as well as the resulting posteriors and (ii) to develop an efficient Markov chain Monte Carlo algorithm to sample from the resulting posterior distribution. A real data example from prostate cancer studies is used to illustrate the proposed methodologies.  相似文献   

2.
    
The modified mixture model with Markov switching volatility specification is introduced to analyze the relationship between stock return volatility and trading volume. We propose to construct an algorithm based on Markov chain Monte Carlo simulation methods to estimate all the parameters in the model using a Bayesian approach. The series of returns and trading volume of the British Petroleum stock will be analyzed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
    
This paper proposes an efficient estimation method for some elliptical copula regression models by expressing both copula density and marginal density functions as scale mixtures of normals (SMN). Implementing these models using the SMN is novel and allows efficient estimation via Bayesian methods. An innovative algorithm for the case of complex semicontinuous margins is also presented. We utilize the facts that copulas are invariant to the location and scale of the margins; all elliptical distributions have the same correlation structure; and some densities can be represented by the SMN. Two simulation studies, one on continuous margins and the other on semicontinuous margins, highlight the favorable performance of the proposed methods. Two empirical studies, one on the US excess returns and one on the Thai wage earnings, further illustrate the applicability of the proposals.  相似文献   

4.
Single-index models have found applications in econometrics and biometrics, where multidimensional regression models are often encountered. This article proposes a nonparametric estimation approach that combines wavelet methods for nonequispaced designs with Bayesian models. We consider a wavelet series expansion of the unknown regression function and set prior distributions for the wavelet coefficients and the other model parameters. To ensure model identifiability, the direction parameter is represented via its polar coordinates. We employ ad hoc hierarchical mixture priors that perform shrinkage on wavelet coefficients and use Markov chain Monte Carlo methods for a posteriori inference. We investigate an independence-type Metropolis-Hastings algorithm to produce samples for the direction parameter. Our method leads to simultaneous estimates of the link function and of the index parameters. We present results on both simulated and real data, where we look at comparisons with other methods.  相似文献   

5.
Most regression modeling is based on traditional mean regression which results in non-robust estimation results for non-normal errors. Compared to conventional mean regression, composite quantile regression (CQR) may produce more robust parameters estimation. Based on a composite asymmetric Laplace distribution (CALD), we build a Bayesian hierarchical model for the weighted CQR (WCQR). The Gibbs sampler algorithm of Bayesian WCQR is developed to implement posterior inference. Finally, the proposed method are illustrated by some simulation studies and a real data analysis.  相似文献   

6.
Path coupling is a useful technique for simplifying the analysis of a coupling of a Markov chain. Rather than defining and analysing the coupling on every pair in Ω×Ω, where Ω is the state space of the Markov chain, analysis is done on a smaller set SΩ×Ω. If the coefficient of contraction β is strictly less than one, no further analysis is needed in order to show rapid mixing. However, if β=1 then analysis (of the variance) is still required for all pairs in Ω×Ω. In this paper we present a new approach which shows rapid mixing in the case β=1 with a further condition which only needs to be checked for pairs in S, greatly simplifying the work involved. We also present a technique applicable when β=1 and our condition is not met.  相似文献   

7.
This article proposes a new Bayesian approach for monotone curve fitting based on the isotonic regression model. The unknown monotone regression function is approximated by a cubic spline and the constraints are represented by the intersection of quadratic cones. We treat the number and locations of knots as free parameters and use reversible jump Markov chain Monte Carlo to obtain posterior samples of knot configurations. Given the number and locations of the knots, second-order cone programming is used to estimate the remaining parameters. Simulation results suggest the method performs well and we illustrate the approach using the ASA car data.  相似文献   

8.
It is common to subsample Markov chain output to reduce the storage burden. Geyer shows that discarding k ? 1 out of every k observations will not improve statistical efficiency, as quantified through variance in a given computational budget. That observation is often taken to mean that thinning Markov chain Monte Carlo (MCMC) output cannot improve statistical efficiency. Here, we suppose that it costs one unit of time to advance a Markov chain and then θ > 0 units of time to compute a sampled quantity of interest. For a thinned process, that cost θ is incurred less often, so it can be advanced through more stages. Here, we provide examples to show that thinning will improve statistical efficiency if θ is large and the sample autocorrelations decay slowly enough. If the lag ? ? 1 autocorrelations of a scalar measurement satisfy ρ? > ρ? + 1 > 0, then there is always a θ < ∞ at which thinning becomes more efficient for averages of that scalar. Many sample autocorrelation functions resemble first order AR(1) processes with ρ? = ρ|?| for some ? 1 < ρ < 1. For an AR(1) process, it is possible to compute the most efficient subsampling frequency k. The optimal k grows rapidly as ρ increases toward 1. The resulting efficiency gain depends primarily on θ, not ρ. Taking k = 1 (no thinning) is optimal when ρ ? 0. For ρ > 0, it is optimal if and only if θ ? (1 ? ρ)2/(2ρ). This efficiency gain never exceeds 1 + θ. This article also gives efficiency bounds for autocorrelations bounded between those of two AR(1) processes. Supplementary materials for this article are available online.  相似文献   

9.
局部线性分位数回归是目前比较流行的非参数分位数回归,其潜在假定待估函数线性光滑.K近邻分位数回归也是非参数分位数回归的重要组成部分,其具有不需待估函数光滑和不同分位点的回归曲线不相交等优点.通过Monte Carlo模拟,比较了两者的估计,得到当待估函数的跳跃点或突变点比较多时,K近邻分位数回归的拟合效果优于局部线性回归.其中模拟的函数是Blocks、Bumps和HeaviSine的函数,它们分别代表跳跃性、波动性、斜率突变性的函数.  相似文献   

10.
Gaussian process models have been widely used in spatial statistics but face tremendous modeling and computational challenges for very large nonstationary spatial datasets. To address these challenges, we develop a Bayesian modeling approach using a nonstationary covariance function constructed based on adaptively selected partitions. The partitioned nonstationary class allows one to knit together local covariance parameters into a valid global nonstationary covariance for prediction, where the local covariance parameters are allowed to be estimated within each partition to reduce computational cost. To further facilitate the computations in local covariance estimation and global prediction, we use the full-scale covariance approximation (FSA) approach for the Bayesian inference of our model. One of our contributions is to model the partitions stochastically by embedding a modified treed partitioning process into the hierarchical models that leads to automated partitioning and substantial computational benefits. We illustrate the utility of our method with simulation studies and the global Total Ozone Matrix Spectrometer (TOMS) data. Supplementary materials for this article are available online.  相似文献   

11.
This article introduces a model that can be considered as an autoregressive extension of the ordered probit model. For parameter estimation we first develop a standard Gibbs sampler which however exhibits bad convergence properties. Using a special transformation group on the sample space we develop a grouped move multigrid Monte Carlo (GM-MGMC) Gibbs sampler and illustrate its fundamental superiority in convergence compared to the standard sampler. To be able to compare the autoregressive ordered probit (AOP) model to other models we further provide an estimation procedure for the marginal likelihood which enables us to compute Bayes factors. We apply the new model to absolute price changes of the IBM stock traded on December 4, 2000, at the New York Stock Exchange. To detect whether the data contain an autoregressive structure we then fit the AOP model as well as the common ordered probit (OP) model to the data. By estimating the corresponding Bayes factor we show that the AOP model fits the data decisively better than the common OP model.  相似文献   

12.
Hamiltonian Monte Carlo (HMC) has been progressively incorporated within the statistician’s toolbox as an alternative sampling method in settings when standard Metropolis–Hastings is inefficient. HMC generates a Markov chain on an augmented state space with transitions based on a deterministic differential flow derived from Hamiltonian mechanics. In practice, the evolution of Hamiltonian systems cannot be solved analytically, requiring numerical integration schemes. Under numerical integration, the resulting approximate solution no longer preserves the measure of the target distribution, therefore an accept–reject step is used to correct the bias. For doubly intractable distributions—such as posterior distributions based on Gibbs random fields—HMC suffers from some computational difficulties: computation of gradients in the differential flow and computation of the accept–reject proposals poses difficulty. In this article, we study the behavior of HMC when these quantities are replaced by Monte Carlo estimates. Supplemental codes for implementing methods used in the article are available online.  相似文献   

13.
    
The normal inverse Gaussian (NIG) distribution is a promising alternative for modelling financial data since it is a continuous distribution that allows for skewness and fat tails. There is an increasing number of applications of the NIG distribution to financial problems. Due to the complicated nature of its density, estimation procedures are not simple. In this paper we propose Bayesian estimation for the parameters of the NIG distribution via an MCMC scheme based on the Gibbs sampler. Our approach makes use of the data augmentation provided by the mixture representation of the distribution. We also extend the model to allow for modelling heteroscedastic regression situations. Examples with financial and simulated data are provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
General Methods for Monitoring Convergence of Iterative Simulations   总被引:3,自引:0,他引:3  
Abstract

We generalize the method proposed by Gelman and Rubin (1992a) for monitoring the convergence of iterative simulations by comparing between and within variances of multiple chains, in order to obtain a family of tests for convergence. We review methods of inference from simulations in order to develop convergence-monitoring summaries that are relevant for the purposes for which the simulations are used. We recommend applying a battery of tests for mixing based on the comparison of inferences from individual sequences and from the mixture of sequences. Finally, we discuss multivariate analogues, for assessing convergence of several parameters simultaneously.  相似文献   

15.
A novel method is proposed to compute the Bayes estimate for a logistic Gaussian process prior for density estimation. The method gains speed by drawing samples from the posterior of a finite-dimensional surrogate prior, which is obtained by imputation of the underlying Gaussian process. We establish that imputation results in quite accurate computation. Simulation studies show that accuracy and high speed can be combined. This fact, along with known flexibility of the logistic Gaussian priors for modeling smoothness and recent results on their large support, makes these priors and the resulting density estimate very attractive.  相似文献   

16.
Abstract

The so-called “Rao-Blackwellized” estimators proposed by Gelfand and Smith do not always reduce variance in Markov chain Monte Carlo when the dependence in the Markov chain is taken into account. An illustrative example is given, and a theorem characterizing the necessary and sufficient condition for such an estimator to always reduce variance is proved.  相似文献   

17.
We have recently developed a global optimization methodology for solving combinatorial problems with either deterministic or stochastic performance functions. This method, the Nested Partitions (NP) method has been shown to generate a Markov chain and with probability one to converge to a global optimum. In this paper, we study the rate of convergence of the method through the use of Markov Chain Monte Carlo (MCMC) methods, and use this to derive stopping rules that can be applied during simulation-based optimization. A numerical example serves to illustrate the feasibility of our approach.  相似文献   

18.
This paper investigates the behaviour of the random walk Metropolis algorithm in high-dimensional problems. Here we concentrate on the case where the components in the target density is a spatially homogeneous Gibbs distribution with finite range. The performance of the algorithm is strongly linked to the presence or absence of phase transition for the Gibbs distribution; the convergence time being approximately linear in dimension for problems where phase transition is not present. Related to this, there is an optimal way to scale the variance of the proposal distribution in order to maximise the speed of convergence of the algorithm. This turns out to involve scaling the variance of the proposal as the reciprocal of dimension (at least in the phase transition-free case). Moreover, the actual optimal scaling can be characterised in terms of the overall acceptance rate of the algorithm, the maximising value being 0.234, the value as predicted by studies on simpler classes of target density. The results are proved in the framework of a weak convergence result, which shows that the algorithm actually behaves like an infinite-dimensional diffusion process in high dimensions.  相似文献   

19.
In Bayesian analysis of mixture models, the label-switching problem occurs as a result of the posterior distribution being invariant to any permutation of cluster indices under symmetric priors. To solve this problem, we propose a novel relabeling algorithm and its variants by investigating an approximate posterior distribution of the latent allocation variables instead of dealing with the component parameters directly. We demonstrate that our relabeling algorithm can be formulated in a rigorous framework based on information theory. Under some circumstances, it is shown to resemble the classical Kullback-Leibler relabeling algorithm and include the recently proposed equivalence classes representatives relabeling algorithm as a special case. Using simulation studies and real data examples, we illustrate the efficiency of our algorithm in dealing with various label-switching phenomena. Supplemental materials for this article are available online.  相似文献   

20.
Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects that enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework enables highly flexible inference for ordinal regression relationships, avoiding assumptions of linearity or additivity in the covariate effects. In standard parametric ordinal regression models, computational challenges arise from identifiability constraints and estimation of parameters requiring nonstandard inferential techniques. A key feature of the nonparametric model is that it achieves inferential flexibility, while avoiding these difficulties. In particular, we establish full support of the nonparametric mixture model under fixed cut-off points that relate through discretization the latent continuous responses with the ordinal responses. The practical utility of the modeling approach is illustrated through application to two datasets from econometrics, an example involving regression relationships for ozone concentration, and a multirater agreement problem. Supplementary materials with technical details on theoretical results and on computation are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号