首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in‐depth mechanistic understanding of the electrochemical lithiation process of tungsten oxide (WO3) is both of fundamental interest and relevant for potential applications. One of the most important features of WO3 lithiation is the formation of the chemically flexible, nonstoichiometric LixWO3, known as tungsten bronze. Herein, we achieved the real‐time observation of the deep electrochemical lithiation process of single‐crystal WO3 nanowires by constructing in situ transmission electron microscopy (TEM) electrochemical cells. As revealed by nanoscale imaging, diffraction, and spectroscopy, it is shown that the rapid and deep lithiation of WO3 nanowires leads to the formation of highly disordered and near‐amorphous LixWO3 phases, but with no detectable traces of elemental W and segregated Li2O phase formation. These results highlight the remarkable chemical and structural flexibility of the LixWO3 phases in accommodating the rapid and deep lithiation reaction.  相似文献   

2.
The exceptional nature of WO3?x dots has inspired widespread interest, but it is still a significant challenge to synthesize high‐quality WO3?x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand‐free WO3?x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow‐up chemical conversion. Surprisingly, the WO3?x dots emerged as co‐reactants for the electrochemiluminescence (ECL) of Ru(bpy)32+ with a comparable ECL efficiency to the well‐known Ru(bpy)32+/tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3?x dots were ca. 300‐fold less toxic. The potency of WO3?x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.  相似文献   

3.
Exploring advanced electrocatalysts for electrocatalytic hydrogen evolution is highly desired but remains a challenge due to the lack of an efficient preparation method and reasonable structural design. Herein, we deliberately designed novel Ag/WO3?x heterostructures through a supercritical CO2‐assisted exfoliation‐oxidation route and the subsequent loading of Ag nanoparticles. The ultrathin and oxygen vacancies‐enriched WO3?x nanosheets are ideal substrates for loading Ag nanoparticles, which can largely increase the active site density and improve electron transport. Besides, the resultant WO3?x nanosheets with porous structure can form during the electrochemical cycling process induced by an electric field. As a result, the exquisite Ag/WO3?x heterostructures show an enhanced hydrogen evolution reaction (HER) activity with a low onset overpotential of ≈30 mV, a small Tafel slope of ≈40 mV dec?1 at 10 mA cm?2, and as well as long‐term durability. This work sheds light on material design and preparation, and even opens up an avenue for the development of high‐efficiency electrocatalysts.  相似文献   

4.
Controlled stacking of different two‐dimensional (2D) atomic layers will greatly expand the family of 2D materials and broaden their applications. A novel approach for synthesizing MoS2/WS2 heterostructures by chemical vapor deposition has been developed. The successful synthesis of pristine MoS2/WS2 heterostructures is attributed to using core–shell WO3?x/MoO3?x nanowires as a precursor, which naturally ensures the sequential growth of MoS2 and WS2. The obtained heterostructures exhibited high crystallinity, strong interlayer interaction, and high mobility, suggesting their promising applications in nanoelectronics. The stacking orientations of the two layers were also explored from both experimental and theoretical aspects. It is elucidated that the rational design of precursors can accurately control the growth of high‐quality 2D heterostructures. Moreover, this simple approach opens up a new way for creating various novel 2D heterostructures by using a large variety of heteronanomaterials as precursors.  相似文献   

5.
Single‐atom catalysts (SACs) have attracted growing attention because they maximize the number of active sites, with unpredictable catalytic activity. Despite numerous studies on SACs, there is little research on the support, which is essential to understanding SAC. Herein, we systematically investigated the influence of the support on the performance of the SAC by comparing with single‐atom Pt supported on carbon (Pt SA/C) and Pt nanoparticles supported on WO3?x (Pt NP/WO3?x). The results revealed that the support effect was maximized for atomically dispersed Pt supported on WO3?x (Pt SA/WO3?x). The Pt SA/WO3?x exhibited a higher degree of hydrogen spillover from Pt atoms to WO3?x at the interface, compared with Pt NP/WO3?x, which drastically enhanced Pt mass activity for hydrogen evolution (up to 10 times). This strategy provides a new framework for enhancing catalytic activity for HER, by reducing noble metal usage in the field of SACs.  相似文献   

6.
Raman spectroscopic analysis is performed on WO3 nanowires at room temperature at pressures from ambient conditions to 45 GPa. Linear dependence of the first‐order Raman signal on various high‐pressure (HP) sections is observed. Upon increasing the applied pressure, the WO3 nanowires undergo four phase transitions at pressures around 1.7, 4.6, 21.5, and 26.2 GPa, which are all less than that reported for bulk WO3. When the pressure is up to 42.5 GPa, a new high‐pressure phase (HP5) appears. This phase has never been reported and is not reversible while unloading the pressure.  相似文献   

7.
A novel in situ N and low‐valence‐state Mo dual doping strategy was employed to significantly improve the conductivity, active‐site accessibility, and electrochemical stability of MoO3, drastically boosting its electrochemical properties. Consequently, our optimized N‐MoO3?x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber‐shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber‐shaped ASC and MFC device based on the N‐MoO3?x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm?3 and a remarkable power density of 0.76 μW cm?1, respectively. Such a bifunctional fiber‐shaped N‐MoO3?x electrode opens the way to integrate the electricity generation and storage for self‐powered sources.  相似文献   

8.
An (oxy)nitride‐based heterostructure for powdered Z‐scheme overall water splitting is presented. Compared with the single MgTa2O6?xNy or TaON photocatalyst, a MgTa2O6?xNy /TaON heterostructure fabricated by a simple one‐pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt‐loaded MgTa2O6?xNy /TaON as a H2‐evolving photocatalyst, a Z‐scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8 % at 420 nm was constructed (PtOx‐WO3 and IO3?/I? pairs were used as an O2‐evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt‐TaON or Pt‐MgTa2O6?xNy as a H2‐evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z‐scheme overall water splitting systems ever reported.  相似文献   

9.
Tungsten oxide nanoparticles (WOxNPs) are gaining increasing attention, but low stabiliity and poor dispersion of WOxNPs hinder their catalytic applications. Herein, WOxNPs were confined in graphene‐analogous boron nitride (g‐BN) by a one‐step, in situ method at high temperature, which can enhance the interactions between WOxNPs and the support and control the sizes of WOxNPs in a range of about 4–5 nm. The as‐prepared catalysts were applied in catalytic oxidation of aromatic sulfur compounds in which they showed high catalytic activity. A balance between the W loading and the size distribution of the WOxNPs could govern the catalytic activity. Furthermore, a synergistic effect between g‐BN and WOxNPs also contributed to high catalytic activity. The reaction mechanism is discussed in detail and the catalytic scope was enlarged.  相似文献   

10.
Preparation of two‐dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn ‐WX2 (n =2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn ‐WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single‐ or few‐layer WX2 nanosheets (NSs). As a proof‐of‐concept application, the WOn ‐WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light‐emitting diodes (QLEDs). The QLED prepared with WO2.9 NP‐WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.  相似文献   

11.
Preparation of two‐dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn ‐WX2 (n =2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn ‐WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single‐ or few‐layer WX2 nanosheets (NSs). As a proof‐of‐concept application, the WOn ‐WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light‐emitting diodes (QLEDs). The QLED prepared with WO2.9 NP‐WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.  相似文献   

12.
High‐quality phase‐pure MA1?xFAxPbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy‐to‐crystallize but unwanted δ‐FAPbI3/MAPbI3 and FAxMA1?xPbI3 requiring rigid crystallization conditions. Here A 2D–3D conversion to transform compact 2D mixed composition HMA1?xFAxPbI3Cl perovskite precursor films into 3D MA1?xFAxPbI3 (x=0.1–0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase‐pure and high quality MA1?xFAxPbI3 without δ‐FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one‐step method to fabricate high quality phase‐pure MA1?xFAxPbI3 (x=0.1–0.9) perovskite films by 2D–3D conversion of HMA1?xFAxPbI3Cl perovskite. This 2D–3D conversion is a promising strategy for lead halide perovskite fabrication.  相似文献   

13.
The conversion of fructose to 1,2‐propylene glycol (PG) is an important process from cellulosic biomass to high‐value added chemicals. Herein, Ru‐WOx/hydroxyapatite (HAP) catalyst was employed for this reaction and reached up to 91.3% yield of PG at 180 °C, 1 MPa initial hydrogen for 8 h in water. On this catalyst, Ru and WOx were highly dispersed on HAP support and they interacted with each other to form a special catalytic center. The lack of isolated Ru or RuW alloy site led to a moderate activity for hydrogenolysis and hindered the further conversion of PG to propanol. The weak basic HAP support efficiently prevented the humin formation. This precisely controlled catalyst has potential in green PG production.  相似文献   

14.
Copper chalcogenide nanostructures (e.g. one‐ dimensional nanotubes) have been the focus of interest because of their unique properties and great potential in various applications. Their current fabrications mainly rely on high‐temperature or complicated processes. Here, with the assistance of theoretical prediction, we prepared Cu2?xE (E=S, Se) micro‐/nanotubes (NTs) with a hierarchical architecture by using copper nanowires (Cu NWs), stable sulfur and selenium powder as precursors at room temperature. The influence of reaction parameters (e.g. precursor ratio, ligands, ligand ratio, and reaction time) on the formation of nanotubes was comprehensively investigated. The resultant Cu2?xE (E=S, Se) NTs were used as counter electrodes (CE) of quantum‐dot‐sensitized solar cells (QDSSCs) to achieve a conversion efficiency (η) of 5.02 and 6.25 %, respectively, much higher than that of QDSSCs made with Au CE (η=2.94 %).  相似文献   

15.
Nitrogen‐doped mesocellular carbon foam (denoted as MCF? CNx) with high surface area and large pore volume was prepared and characterized in detail. The MCF? CNx was further functionalized by oxidation with HNO3 (denoted as MCF? CNx‐O) in order to effectively improve its hydrophilicity and biocompatibility. Both MCF? CNx and MCF? CNx‐O were used for immobilization of Hb and design of electrochemical biosensors. The activity of Hb immobilized on MCF? CNx‐O is two times higher than that of Hb immobilized on MCF? CNx. The Hb‐MCF? CNx‐O‐Nafion modified electrode displays fast response, high sensitivity and low detection limit to the detection of hydrogen peroxide. The sensitivity of Hb‐MCF? CNx‐O‐Nafion modified electrode (477 μA mM?1 cm?2) is twice that of Hb‐MCF? CNx‐Nafion modified electrode.  相似文献   

16.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

17.
Angle‐resolved XPS data (elemental quantification and high‐energy‐resolution C 1s) are presented for ten polymers with side‐chains of the form ? OCO(CF2)yF, ? COO(CH2)2OCO(CF2)yF (y = 1, 2, 3) and ? COO(CH2)x(CF2)yF (x = 1, y = 1, 2, 3; x = 2, y = 8). Particular attention was paid to charge compensation and speed of data acquisition, with co‐addition from multiple fresh samples to give spectra with good energy resolution and good signal‐to‐noise ratio free from the effects of x‐ray‐induced degradation. Water contact angles for the polymers are also reported. The XPS data demonstrate preferential surface segregation of fluorine‐containing groups for all but the shortest side‐chain polymer, where the ? OCOCF3 side‐chain either does not surface segregate or is too short for surface segregation to be detectable by angle‐resolved XPS. In the other polymers studied the relative positions of functional groups in the side‐chains correlate with the angle‐resolved behaviour of the corresponding C 1s components. This shows that the surface side‐chains are oriented towards the polymer surface. For the ? COO(CH2)2OCO(CF2)yF (y = 1) side‐chain, the angle‐resolved C 1s data suggest reduced ordering and linearity compared with y = 2 and 3. For any particular series of polymers, e.g. ? COO(CH2)x(CF2)yF, the water contact angles increase with y, consistent with burying of the hydrophilic ester groups as y increases. For any particular value of y the sequence of water contact angles is ? COO(CH2)x(CF2)yF > ? OCO(CF2)yF ~ ? COO(CH2)2OCO(CF2)yF, suggesting greater ordering and density of fluorocarbon species at the surface of the ? COO(CH2)x(CF2)yF side‐chain polymers compared with the other polymers studied. For the ? COO(CH2)2(CF2)8F polymer a water contact angle of 124° is measured, which is greater than that of poly(tetrafluoroethene). The ? COO(CH2)2OCO(CF2)F polymer is unusual in that it shows a particularly low water contact angle (83° ), suggesting that the probe fluid is able to sense both ester groups, consistent with the reduced ordering of the side‐chain detected by angle‐resolved XPS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The reactions of 4,5,6,7‐tetrathiocino‐[1,2‐b:3,4‐b′]‐1,3,8,10‐tetrasubstituted‐diimidazolyl‐2,9‐dithiones (R2,R′2‐todit; 1 : R=R′=Et; 2 : R=R′=Ph; 3 : R=Et, R′=Ph) with Br2 exclusively afforded 1:1 and 1:2 “T‐shaped” adducts, as established by FT‐Raman spectroscopy and single‐crystal X‐ray diffraction in the case of complex 1? 2 Br2. On the other hand, the reactions of compounds 1 – 3 with molecular I2 provided charge‐transfer (CT) “spoke” adducts, among which the solvated species 3? 2 I2 ? (1?x)I2 ? x CH2Cl2 (x=0.94) and ( 3 )2 ? 7 I2 ? x CH2Cl2, (x=0.66) were structurally characterized. The nature of all of the reaction products was elucidated based on elemental analysis and FT‐Raman spectroscopy and supported by theoretical calculations at the DFT level.  相似文献   

19.
Atomically precise alloying and de‐alloying processes for the formation of Ag–Au and Cu–Au nanoparticles of 25‐metal‐atom composition (referred to as AgxAu25?x(SR)18 and CuxAu25?x(SR)18, in which R=CH2CH2Ph) are reported. The identities of the particles were determined by matrix‐assisted laser desorption ionization mass spectroscopy (MALDI‐MS). Their structures were probed by fragmentation analysis in MALDI‐MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13‐atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in AgxAu25?x(SR)18 (x=0–8) was dependent on the molar ratio of AgI/AuIII precursors in the synthesis, whereas the number of Cu atoms in CuxAu25?x(SR)18 (x=0–4) was independent of the molar ratio of CuII/AuIII precursors applied. Interestingly, the CuxAu25?x(SR)18 nanoparticles show a spontaneous de‐alloying process over time, and the initially formed CuxAu25?x(SR)18 nanoparticles were converted to pure Au25(SR)18. This de‐alloying process was not observed in the case of alloyed AgxAu25?x(SR)18 nanoparticles. This contrast can be attributed to the stability difference between CuxAu25?x(SR)18 and AgxAu25?x(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.  相似文献   

20.
The activity of many water‐splitting photocatalysts could be improved by the use of RhIII–CrIII mixed oxide (Rh2?xCrxO3) particles as cocatalysts. Although further improvement of water‐splitting activity could be achieved if the size of the Rh2?xCrxO3 particles was decreased further, it is difficult to load ultrafine (<2 nm) Rh2?xCrxO3 particles onto a photocatalyst by using conventional loading methods. In this study, a new loading method was successfully established and was used to load Rh2?xCrxO3 particles with a size of approximately 1.3 nm and a narrow size distribution onto a BaLa4Ti4O15 photocatalyst. The obtained photocatalyst exhibited an apparent quantum yield of 16 %, which is the highest achieved for BaLa4Ti4O15 to date. Thus, the developed loading technique of Rh2?xCrxO3 particles is extremely effective at improving the activity of the water‐splitting photocatalyst BaLa4Ti4O15. This method is expected to be extended to other advanced water‐splitting photocatalysts to achieve higher quantum yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号